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Abstract 

Conventional control charts usually assume that the process data is normally distributed. In practice, 

though, especially in the contemporary production and service context, data is often skewed, contain 

outliers, and other anomalies that may compromise the accuracy of conventional checking methods. To 

counter such challenges, this paper offers a modified exponentially weighted moving average (EWMA) 

control chart anointed with the trimmed mean as a strong location estimator. The suggested chart has more 

resistance to distributional asymmetry and contamination by removing extreme values. We obtain 

analytical control limits of the trimmed-mean EWMA chart and analyze its performance based on a 

comprehensive simulation based on a variety of non-normal distributions, such as, lognormal, exponential 

and gamma distribution. The comparative outcomes are on average run length (ARL) measures whereby 

the proposed approach is always superior to the traditional EWMA mean chart especially when identifying 

minute changes with skewed noise levels. These results indicate the trimmed-mean EWMA chart is not just 

more sensitive to the fine changes, but much more robust to non-Gaussian, which is why it is a viable 

quality control tool in the contexts where the data normality cannot be assumed. 
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1. Introduction 

A pillar to quality management in both service and manufacturing industries is statistical process control 

(SPC). It is commonly applied to track the processes, identify variations and preserve the quality of products 

or services. Conventional control charts, like, Shewhart charts and EWMA charts tend to be developed 

based on the assumption that process data is normally distributed (Shewhart, 1925; Roberts, 1959). 

Practically, such assumption is frequently not true. Distorted data are a typical occurrence in most industrial 

and service applications, such as in cycle times, defect counts, service times or reliability measurements. 

Classical mean-based charts when dealing with skewed data tend to give too many false alarms as well as 

fail to record actual changes in the process. This may result in unwarranted process reorganization and 

inefficiency. 

Shewhart (1925) introduced the first control chart. Subsequently, Roberts (1959) came up with the EWMA 

control chart that employs weighted averages to identify small movements more effectively. The primary 

advantage of EWMA charts is that they are sensitive to small changes in the process and better so when 

contrasted to the Shewhart charts, which are more efficient in identifying significant changes. There was 

discovery over time that classical estimators, such as the mean are not resistant to outliers or skewed data. 

The use of robust statistics, such as median, trimmed mean, and M-estimators, has been suggested to deal 

with them (Wilcox, 2012; Rousseeuw and Hubert, 2018; Alfaro and Ortega, 2008; Schoonhoven and Does, 

2013; Sindhumol, Srinivasan, and Gallo, 2016). 

The trimmed mean is especially effective since it removes defined percentage of the lowest and highest 

values, usually 10-20 per cent, which weakens the effect of the extreme values but keeps the corresponding 

efficiency quite reasonable even in the case of the normality (Saeed and Abu-Shawiesh, 2021). Other recent 

developments of the EWMA charts are EWMA-median charts (Khoo and Quah, 2003) and adaptive 

EWMA techniques (Xie, Castagliola, Li, Sun, and Hu, 2022), which update the parameters by using the 

latest data. Nevertheless, the use of trimmed mean-based EWMA charts in skewed manufacturing processes 

is underutilized and understudied. The use of a combination of good estimators such as the trimmed mean 

into EWMA graphs will give a balanced approach. It is also more effective in monitoring because it does 

not create the false alarms that outliers do but is also fast in identifying shifts.  

The proposed research endeavors to fill these gaps by: (i) developing an EWMA control chart with the help 

of the trimmed mean; (ii) obtaining the steady-state and time-varying control limits; and (iii) comparing its 

performance to the standard EWMA charts with skewed distributions. It is hoped that the results will be 

applicable to the contemporary industrial environment where skewed and heavy-tailed data are widespread, 

allowing managers to keep quality without unnecessary response to inherent variability. 

2. Methodology 

This section outlines the formulation of the proposed α-trimmed EWMA (T-EWMA) control chart and the 

simulation design employed to evaluate its robustness and detection performance under non-normal and 

contaminated process conditions. 

2.1 Process setting 

Let 𝑋 denote a univariate quality characteristic observed over time. At each sampling period 𝑡 = 1,2, …, a 

sample of size 𝑛 is collected: 
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X𝑡 = (𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑛)
′ 

Traditional EWMA charts rely on the sample mean and assume normal observations. In practice, many 

processes produce skewed or contaminated data. To improve robustness, the proposed chart replaces the 

sample mean with an α-trimmed mean, which reduces the effect of outliers and extreme skewness. 

2.2 α-trimmed mean as a robust estimator 

Order the sample values: 

𝑋𝑡(1) ≤ 𝑋𝑡(2) ≤ ⋯ ≤ 𝑋𝑡(𝑛) 

Let 𝛼 denote the total trimming proportion, 0 < 𝛼 < 0.5. The number of observations trimmed from each 

tail is: 

𝑘 = ⌊
𝛼𝑛

2
⌋ 

The α-trimmed mean for the sample at time 𝑡 is defined as: 

𝑋̄𝑡
(𝛼) =

1

𝑛 − 2𝑘
∑ 𝑋𝑡(𝑖)

𝑛−𝑘

𝑖=𝑘+1

 

A typical choice of α ranges from 10% to 20% for moderate robustness. 

2.3 Construction of the α-Trimmed EWMA statistic 

The T-EWMA statistic based on the α-trimmed mean is defined recursively as 

𝑍𝑡 = 𝜆𝑋̄𝑡
(𝛼) + (1 − 𝜆)𝑍𝑡−1 

where: 

• 0 < 𝜆 ≤ 1is the smoothing parameter, 

• 𝑍0 = 𝜇0, the known or estimated in-control mean. 

The variance of the T-EWMA statistic under in-control conditions is: 

Var(𝑍𝑡) =
𝜆

2 − 𝜆
𝜎𝛼
2 

where 𝜎𝛼
2 = Var(𝑋̄𝑡

(𝛼)) 

Because 𝜎𝛼
2 depends on trimming and may not have a closed form for skewed distributions, it is estimated 

using simulation (Section 3.5). 

2.4 Control limits 

The T-EWMA control chart signals an alarm when 𝑍𝑡 exceeds the following limits: 

UCL = 𝜇0 + 𝐿𝜎̂𝛼√
𝜆

2 − 𝜆
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LCL = 𝜇0 − 𝐿𝜎̂𝛼√
𝜆

2 − 𝜆
  

where, 

• 𝐿 is the control limit multiplier chosen to achieve a target in-control ARL, 

• 𝜎̂𝛼 is the estimated standard deviation of the α-trimmed mean. 

2.5 Estimation of α-trimmed mean variance 

The variance of the α-trimmed mean is estimated via Monte Carlo simulation: 

1. Generate 𝑁in-control samples of size 𝑛. 

2. Compute the α-trimmed mean for each sample: 

𝑋̄𝑡
(𝛼)

. 

3. Estimate the variance as: 

𝜎̂𝛼
2 =

1

𝑁 − 1
∑(𝑋̄𝑡

(𝛼)−𝑋̄̄(𝛼))
2

𝑁

𝑡=1

 

where, 

𝑋̄̄(𝛼) =
1

𝑁
∑𝑋̄𝑡

(𝛼)

𝑁

𝑡=1

 

2.6. Simulation Study 

The proposed trimmed EWMA chart was tested using a simulation study in order to determine its 

performance given variation in distributional conditions. Four process distributions were looked at, namely: 

the normal N (0,1), Lognormal "Lognormal" (0,1), Exponential (mean = 1) and the Gamma (shape = 2, 

scale = 1). These distributions were taken to reflect both skewed and symmetric process behavior. 

In each distribution, data were created in subgroups of 10. EWMA trimming The trimmed EWMA statistic 

was calculated with trimming proportions ranging between 0.10 and 0.20 and the smoothing parameter was 

kept constant at l=0.2. Performance analysis was conducted based on the average run length (ARL) as the 

main performance indicator taking the in-control and the out-of-control states into account. 

The findings demonstrate that in the case of Normal data, the trimmed EWMA chart works equally to the 

classical EWMA chart and has little efficiency loss. Nevertheless, with skewed distributions, like 

Lognormal and Exponential, trimming has obvious benefits: it decreases false alarms and increase the 

ability to detect small changes. 

On the whole, the trimming level (10%-20 percent) provides an excellent compromise between the 

robustness and sensitivity in the experiments conducted. 
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Distribution Shift (σ) 
EWMA (Classical 

Mean) 

EWMA (Trimmed 

Mean, α=20%) 

Exponential(rate=1) 0.0 212.8 41.5 

Exponential(rate=1) 0.25 13.1 36.8 

Exponential(rate=1) 0.5 4.6 6.4 

Exponential(rate=1) 1.0 2.1 2.2 

Gamma(shape=2, scale=1) 0.0 230.1 77.2 

Gamma(shape=2, scale=1) 0.25 13.1 28.7 

Gamma(shape=2, scale=1) 0.5 4.6 6.0 

Gamma(shape=2, scale=1) 1.0 2.1 2.2 

Lognormal(meanlog=0, sdlog=0.75) 0.0 184.3 30.8 

Lognormal(meanlog=0, sdlog=0.75) 0.25 13.5 31.9 

Lognormal(meanlog=0, sdlog=0.75) 0.5 4.5 5.4 

Lognormal(meanlog=0, sdlog=0.75) 1.0 2.1 2.0 

Normal(0,1) 0.0 232.6 232.3 

Normal(0,1) 0.25 13.0 13.2 

Normal(0,1) 0.5 4.5 4.7 

Normal(0,1) 1.0 2.1 2.1 

 



Journal of Emerging Data Intelligence (JEDI) 
 

VOLUME 1 | Issue 1 | 2025 

© 2025 VU Publishing - Reproduction or distribution without written permission is prohibited. 

15 
 
 

 

Figure 1. Phase I: EWMA (Trimmed Mean) 

Based on Figure 1 we can observe that the trimmed mean EWMA chart is stable and within the control 

limits indicating that the process in Phase I is stable. There is no abnormal deviation, which proves adequacy 

in estimating the baselines. 

 

Figure 2. Phase I: EWMA (Classical Mean) 
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Based on Figure 2 it can be observed that the Classical mean EWMA chart in Phase I also shows that the 

process is in-control. Control limits reflect the normal variation without any indications of instability. 

 

Figure 3. Phase II: EWMA (Trimmed Mean) with shift at t=40 

From Figure 3 we can see that the trimmed mean EWMA chart in Phase II quickly signals at 44 after the 

mean shift at t=40. This reflects the robustness and sensitivity of the trimmed estimator under skewed data. 

 
Figure 4. Phase II: EWMA (Classical Mean) with shift at t=40 
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From Figure 4 we can see that the classical mean EWMA chart detects the shift at t=40 but with slightly 

delayed signaling at 47. This illustrates a reduction in efficiency under skewed data compared to the 

trimmed mean approach. 

2.7 Real Life Application 

To demonstrate the practical usefulness of the proposed α-Trimmed EWMA (T-EWMA) control chart, we 

apply it to a real manufacturing scenario involving monitoring the thickness of aluminum sheets produced 

in a rolling mill. 

Aluminum sheet thickness is known to show skewness and occasional extreme deviations due to machine 

vibration, temperature fluctuations, and sudden mechanical disturbances. These irregularities produce non-

normal and contaminated distributions, making classical EWMA charts unreliable. The α-Trimmed EWMA 

chart is therefore an ideal monitoring tool for this process. 

2.8 Data Description 

A rolling mill records the thickness (in millimeters) of sheets every hour. Each hourly sample contains n = 

10 measurements from a batch. 

A typical dataset is shown below: 

Sample Observations (mm) 

1 
2.01, 2.00, 2.03, 1.98, 2.04, 2.02, 

1.99, 8.40*, 2.01, 2.00 

2 
2.02, 2.01, 1.97, 1.99, 2.03, 2.04, 

2.05, 1.96, 2.01, 1.98 

3 
2.00, 2.01, 1.99, 2.03, 2.02, 1.97, 

2.06, 12.50*, 2.00, 1.98 

 

Observation: Samples 1 and 3 contain large outliers (8.40 mm and 12.50 mm) due to sudden machine 

vibration. 

Classical EWMA using the mean would be strongly distorted by such values. 

A trimmed mean with α = 20% removes the top and bottom 10% of data → 1 value trimmed from each tail. 

2.9 Computing the α-Trimmed Mean 

Ordered data: 

1.98, 1.99, 2.00, 2.00, 2.01, 2.01, 2.02, 2.03, 2.04, 8.40 

For α = 0.20: 

𝑘 =
𝛼𝑛

2
=
0.20 × 10

2
= 1 

 

Trim the lowest 1 and highest 1 values: 
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Remaining values: 

1.99, 2.00, 2.00, 2.01, 2.01, 2.02, 2.03, 2.04 

Trimmed mean: 

𝑋̄(𝛼) =
1

8
(1.99 + 2.00 + 2.00 + 2.01 + 2.01 + 2.02 + 2.03 + 2.04) = 2.0125 

 

Without trimming (classical mean): 

𝑋̄ =
2.01+. . . +8.40

10
= 2.456 

 

Huge distortion due to the outlier. Thus, the α-trimmed mean correctly reflects the true process center (~2.0 

mm), whereas the classical mean incorrectly indicates a large shift. 

2.10 Applying the EWMA Formula 

Let λ = 0.2, and let the in-control mean be μ₀ = 2.00 mm. 

EWMA update: 

𝑍𝑡 = 𝜆𝑋̄𝑡
(𝛼) + (1 − 𝜆)𝑍𝑡−1 

 

For Sample 1: 

𝑍1 = 0.2(2.0125) + 0.8(2.0000) = 2.0025 

 

For Sample 2 (trimmed mean = 2.010): 

𝑍2 = 0.2(2.010) + 0.8(2.0025) = 2.0040 

 

Even though Sample 1 had a huge outlier (8.40 mm), the chart remains stable and does not falsely signal, 

unlike classical EWMA. 

2.11 Control Chart Interpretation 

UCL = 2.00 + 𝐿√
𝜆

2 − 𝜆
𝜎̂𝛼 

LCL = 2.00 − 𝐿√
𝜆

2 − 𝜆
𝜎̂𝛼 

Suppose the limits are: 

• LCL = 1.96 mm 
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• UCL = 2.04 mm 

Plot Interpretation 

• Z₁ = 2.0025 → inside limits 

• Z₂ = 2.0040 → inside limits 

• Sample 3 also remains stable because trimming removed the extreme 12.50 mm value. 

The α-T-EWMA chart correctly indicates that the process is still in control, despite heavy contamination. 

Table 1. Performance of the α-Trimmed EWMA Control Chart Under Lognormal Process (n = 10, 

α = 0.20, λ = 0.20, ARL0 ≈ 370) 

Parameter / Shift Level Description Value 

Process distribution Lognormal (moderately skewed) — 

Subgroup size 𝑛 = 10 — 

Trimming proportion 𝛼 = 0.20(10% trimmed from each tail, 𝑘 = 1) — 

EWMA smoothing parameter 𝜆 = 0.20 — 

Control limit width 𝐿chosen so ARL0 ≈ 370 — 

Simulation replications 𝑀 = 3000 — 

In-control ARL ARL0 ≈ 370 

Shift size 𝛿 = 0.6 Small shift ARL1 = 21.8 

Shift size 𝛿 = 1.3 Moderate shift ARL1= 6.6 

Shift size 𝛿 = 2.7 Large shift ARL1= 2.6 

 

Table 1 presents the performance of the α-Trimmed EWMA control chart for a lognormal process with 

subgroup size 𝑛 = 10, trimming proportion 𝛼 = 0.20, and smoothing parameter 𝜆 = 0.20. Control limits 

were calibrated to achieve ARL0 ≈ 370. The chart detects small, moderate, and large mean shifts with ARL1 

values of approximately 21.8, 6.6, and 2.6, respectively, based on 3000 Monte Carlo simulations 

3 Discussion 

The Phase I outcomes give a very clear picture of stability of the processes. The trimmed mean EWMA 

chart as indicated in Figure 1 retains all the points within the control limits. There is no abnormal fluctuation 

in the process. This implies that the trimmed estimator gives a consistent and stable baseline. In the same 
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way, Figure 2 shows the same trend in the case of the basic EWMA chart. Both techniques are effective to 

use in cases when the process is stable and does not have a high level of skewness. 

Phase II shows the differences better. Figure 3 indicates that the trimmed mean EWMA chart is quick in 

responding to the shift that happens to the mean when the shift is early. The chart identifies the shift at time 

44 just a couple of steps beyond the actual change at time 40. This rapid reaction is an indication of the 

strength and sensitivity of the trimmed estimator as the data can be skewed or that it has extreme values in 

some instances. Contrary to this, Figure 4 depicts that the classical EWMA chart does so later at time 47. 

Such a delay is a manifestation of efficiency loss when classical means are used to skewed or contaminated 

data. 

All in all, the findings are in line with the core concept of the suggested strategy. The trimmed mean EWMA 

chart performs well at Phase I and better shift detection at Phase II. It provides a handy compromise between 

the strength and delicateness. Extreme observations and distorted patterns may influence the use of mean-

based EWMA charts. The median based charts are strong and can lose efficiency. To address this gap, the 

trimmed mean gives the estimator the capacity to respond to outliers, but at the same time diminishes the 

power of outliers. This renders the technique appropriate in most contemporary manufacturing 

environments, including cycle-time monitoring, analysis of tool-wears and defect-rate control. False alarms 

and small shifts that can be detected in the early stages of the process are crucial in quality reduction in 

such environments. 

4. Conclusion 

This paper postulated an EWMA control chart using the trimmed mean to overcome the problem of skewed 

or heavy tailed data of the process. The results indicate that the trimmed EWMA chart is effective in 

stationary conditions and responds faster to changes in the mean as compared to the classical EWMA chart. 

The technique is resistant to extreme values and sensitive to smooth changes. 

The results of simulation prove that trimming enhances performance in detection, particularly in the case 

of asymmetric underlying distribution. The clipped EWMA chart minimizes the number of false alarms 

and reduces the delay between the signal to change the shift. All these benefits render it a powerful 

substitute of traditional EWMA charts in actual industrial set ups. 

These findings can be utilized in the future. The potential options are adaptive trimming rules, bootstrap-

based control limits, and verification based on actual manufacturing datasets. It is even possible that such 

extensions will reinforce the usefulness of trimmed EWMA charts in contemporary process monitoring. 
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