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Abstract

Conventional control charts usually assume that the process data is normally distributed. In practice,
though, especially in the contemporary production and service context, data is often skewed, contain
outliers, and other anomalies that may compromise the accuracy of conventional checking methods. To
counter such challenges, this paper offers a modified exponentially weighted moving average (EWMA)
control chart anointed with the trimmed mean as a strong location estimator. The suggested chart has more
resistance to distributional asymmetry and contamination by removing extreme values. We obtain
analytical control limits of the trimmed-mean EWMA chart and analyze its performance based on a
comprehensive simulation based on a variety of non-normal distributions, such as, lognormal, exponential
and gamma distribution. The comparative outcomes are on average run length (ARL) measures whereby
the proposed approach is always superior to the traditional EWMA mean chart especially when identifying
minute changes with skewed noise levels. These results indicate the trimmed-mean EWMA chart is not just
more sensitive to the fine changes, but much more robust to non-Gaussian, which is why it is a viable
quality control tool in the contexts where the data normality cannot be assumed.
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1. Introduction

A pillar to quality management in both service and manufacturing industries is statistical process control
(SPC). It is commonly applied to track the processes, identify variations and preserve the quality of products
or services. Conventional control charts, like, Shewhart charts and EWMA charts tend to be developed
based on the assumption that process data is normally distributed (Shewhart, 1925; Roberts, 1959).
Practically, such assumption is frequently not true. Distorted data are a typical occurrence in most industrial
and service applications, such as in cycle times, defect counts, service times or reliability measurements.
Classical mean-based charts when dealing with skewed data tend to give too many false alarms as well as
fail to record actual changes in the process. This may result in unwarranted process reorganization and
inefficiency.

Shewhart (1925) introduced the first control chart. Subsequently, Roberts (1959) came up with the EWMA
control chart that employs weighted averages to identify small movements more effectively. The primary
advantage of EWMA charts is that they are sensitive to small changes in the process and better so when
contrasted to the Shewhart charts, which are more efficient in identifying significant changes. There was
discovery over time that classical estimators, such as the mean are not resistant to outliers or skewed data.
The use of robust statistics, such as median, trimmed mean, and M-estimators, has been suggested to deal
with them (Wilcox, 2012; Rousseeuw and Hubert, 2018; Alfaro and Ortega, 2008; Schoonhoven and Does,
2013; Sindhumol, Srinivasan, and Gallo, 2016).

The trimmed mean is especially effective since it removes defined percentage of the lowest and highest
values, usually 10-20 per cent, which weakens the effect of the extreme values but keeps the corresponding
efficiency quite reasonable even in the case of the normality (Saeed and Abu-Shawiesh, 2021). Other recent
developments of the EWMA charts are EWMA-median charts (Khoo and Quah, 2003) and adaptive
EWMA techniques (Xie, Castagliola, Li, Sun, and Hu, 2022), which update the parameters by using the
latest data. Nevertheless, the use of trimmed mean-based EWMA charts in skewed manufacturing processes
is underutilized and understudied. The use of a combination of good estimators such as the trimmed mean
into EWMA graphs will give a balanced approach. It is also more effective in monitoring because it does
not create the false alarms that outliers do but is also fast in identifying shifts.

The proposed research endeavors to fill these gaps by: (i) developing an EWMA control chart with the help
of the trimmed mean; (ii) obtaining the steady-state and time-varying control limits; and (iii) comparing its
performance to the standard EWMA charts with skewed distributions. It is hoped that the results will be
applicable to the contemporary industrial environment where skewed and heavy-tailed data are widespread,
allowing managers to keep quality without unnecessary response to inherent variability.

2. Methodology

This section outlines the formulation of the proposed a-trimmed EWMA (T-EWMA) control chart and the
simulation design employed to evaluate its robustness and detection performance under non-normal and
contaminated process conditions.

2.1 Process setting

Let X denote a univariate quality characteristic observed over time. At each sampling period t = 1,2, ..., a
sample of size n is collected:
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Xt = Xer, X2y s Xen)'
Traditional EWMA charts rely on the sample mean and assume normal observations. In practice, many
processes produce skewed or contaminated data. To improve robustness, the proposed chart replaces the
sample mean with an a-trimmed mean, which reduces the effect of outliers and extreme skewness.

2.2 a-trimmed mean as a robust estimator
Order the sample values:

Xt(l) S Xt(Z) S - < Xt(n)
Let a denote the total trimming proportion, 0 < a < 0.5. The number of observations trimmed from each
tail is:
k= lan
Y

The a-trimmed mean for the sample at time ¢ is defined as:

1 n—-k
o(a) _
X =TTk Z Xi@y

i=k+1
A typical choice of o ranges from 10% to 20% for moderate robustness.

2.3 Construction of the o-Trimmed EWMA statistic

The T-EWMA statistic based on the a-trimmed mean is defined recursively as

Z, =X+ 1 -0z,
where:

e 0 < A < 1is the smoothing parameter,
e Zy = Uy, the known or estimated in-control mean.

The variance of the T-EWMA statistic under in-control conditions is:

A 2
Var(Z;) = 7 /16“

where 02 = Var(X't(a))

Because 2 depends on trimming and may not have a closed form for skewed distributions, it is estimated
using simulation (Section 3.5).

2.4 Control limits
The T-EWMA control chart signals an alarm when Z; exceeds the following limits:

A
UCL = Ho +L6a m
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A
LCL = HUo —L6a m

where,
e L is the control limit multiplier chosen to achieve a target in-control ARL,
e 4, is the estimated standard deviation of the a-trimmed mean.
2.5 Estimation of a-trimmed mean variance
The variance of the a-trimmed mean is estimated via Monte Carlo simulation:
1. Generate Nin-control samples of size n.
2. Compute the a-trimmed mean for each sample:
X

3. Estimate the variance as:

where,

2.6. Simulation Study

The proposed trimmed EWMA chart was tested using a simulation study in order to determine its
performance given variation in distributional conditions. Four process distributions were looked at, namely:
the normal N (0,1), Lognormal "Lognormal" (0,1), Exponential (mean = 1) and the Gamma (shape = 2,
scale = 1). These distributions were taken to reflect both skewed and symmetric process behavior.

In each distribution, data were created in subgroups of 10. EWMA trimming The trimmed EWMA statistic
was calculated with trimming proportions ranging between 0.10 and 0.20 and the smoothing parameter was
kept constant at 1=0.2. Performance analysis was conducted based on the average run length (ARL) as the
main performance indicator taking the in-control and the out-of-control states into account.

The findings demonstrate that in the case of Normal data, the trimmed EWMA chart works equally to the
classical EWMA chart and has little efficiency loss. Nevertheless, with skewed distributions, like
Lognormal and Exponential, trimming has obvious benefits: it decreases false alarms and increase the
ability to detect small changes.

On the whole, the trimming level (10%-20 percent) provides an excellent compromise between the
robustness and sensitivity in the experiments conducted.

VOLUME 1 |Issue 1]|2025
© 2025 VU Publishing - Reproduction or distribution without written permission is prohibited.
13



Journal of Emerging Data Intelligence (JEDI)

EWMA (Classical

EWMA  (Trimmed

Distribution Shift (o) Mean) Mean, 4=20%)
Exponential(rate=1) 0.0 212.8 41.5
Exponential(rate=1) 0.25 13.1 36.8
Exponential(rate=1) 0.5 4.6 6.4
Exponential(rate=1) 1.0 2.1 2.2
Gamma(shape=2, scale=1) 0.0 230.1 77.2
Gamma(shape=2, scale=1) 0.25 13.1 28.7
Gamma(shape=2, scale=1) 0.5 4.6 6.0
Gamma(shape=2, scale=1) 1.0 2.1 2.2
Lognormal(meanlog=0, sdlog=0.75) 0.0 184.3 30.8
Lognormal(meanlog=0, sdlog=0.75) 0.25 13.5 31.9
Lognormal(meanlog=0, sdlog=0.75) 0.5 4.5 5.4
Lognormal(meanlog=0, sdlog=0.75) 1.0 2.1 2.0
Normal(0,1) 0.0 232.6 2323
Normal(0,1) 0.25 13.0 13.2
Normal(0,1) 0.5 4.5 4.7
Normal(0,1) 1.0 2.1 2.1
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Phase I: EWMA (Trimmed Mean)

EWMA _TrimmedMean
1.4y ucL
-—-- LCL
------ Center (p0)
13}
= 121
2 N A WY AR AR YU SRR SN N J A VR S S
)
©
4
0
1.1r
1.0F N
\
AY
N
\\\
0.9t e e — e Ea——

Subgroup index (t)

Final Values (t=50): EWMA=1.019, UCL=1.426, LCL=0.914

Figure 1. Phase I: EWMA (Trimmed Mean)

Based on Figure 1 we can observe that the trimmed mean EWMA chart is stable and within the control
limits indicating that the process in Phase I is stable. There is no abnormal deviation, which proves adequacy
in estimating the baselines.

Phase I: EWMA (Mean)
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Figure 2. Phase I: EWMA (Classical Mean)
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Based on Figure 2 it can be observed that the Classical mean EWMA chart in Phase I also shows that the

process is in-control. Control limits reflect the normal variation without any indications of instability.
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Phase II: EWMA (Trimmed Mean)

EWMA_TrimmedMean

ucL
-—- LCL !
------ Center (u0)
----- Shift introduced at t=40
. . . ‘ I N D S |
0 10 20 30 40 50 60 70 80

Subgroup index (t)

Final Values (t=80): EWMA=1.708, UCL=1.426, LCL=0.914

Figure 3. Phase II: EWMA (Trimmed Mean) with shift at t=40

From Figure 3 we can see that the trimmed mean EWMA chart in Phase II quickly signals at 44 after the
mean shift at t=40. This reflects the robustness and sensitivity of the trimmed estimator under skewed data.
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Figure 4. Phase II: EWMA (Classical Mean) with shift at t=40
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From Figure 4 we can see that the classical mean EWMA chart detects the shift at t=40 but with slightly
delayed signaling at 47. This illustrates a reduction in efficiency under skewed data compared to the
trimmed mean approach.

2.7 Real Life Application

To demonstrate the practical usefulness of the proposed a-Trimmed EWMA (T-EWMA) control chart, we
apply it to a real manufacturing scenario involving monitoring the thickness of aluminum sheets produced
in a rolling mill.

Aluminum sheet thickness is known to show skewness and occasional extreme deviations due to machine
vibration, temperature fluctuations, and sudden mechanical disturbances. These irregularities produce non-
normal and contaminated distributions, making classical EWMA charts unreliable. The a-Trimmed EWMA
chart is therefore an ideal monitoring tool for this process.

2.8 Data Description

A rolling mill records the thickness (in millimeters) of sheets every hour. Each hourly sample contains n =
10 measurements from a batch.

A typical dataset is shown below:

Sample | Observations (mm)

2.01, 2.00, 2.03, 1.98, 2.04, 2.02,

1 1.99, 8.40*, 2.01, 2.00

) 2.02, 2.01, 1.97, 1.99, 2.03, 2.04,
2.05,1.96,2.01, 1.98

3 2.00, 2.01, 1.99, 2.03, 2.02, 1.97,

2.06, 12.50%*, 2.00, 1.98

Observation: Samples 1 and 3 contain large outliers (8.40 mm and 12.50 mm) due to sudden machine
vibration.

Classical EWMA using the mean would be strongly distorted by such values.
A trimmed mean with a = 20% removes the top and bottom 10% of data — 1 value trimmed from each tail.

2.9 Computing the a-Trimmed Mean

Ordered data:
1.98, 1.99, 2.00, 2.00, 2.01, 2.01, 2.02, 2.03, 2.04, 8.40

For a.=0.20:

k_om_O.ZOxlO_l
== > =

Trim the lowest 1 and highest 1 values:
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Remaining values:
1.99, 2.00, 2.00, 2.01, 2.01, 2.02, 2.03, 2.04

Trimmed mean:

. 1
X@ = §(1.99 + 2.00 + 2.00 + 2.01 + 2.01 + 2.02 + 2.03 + 2.04) = 2.0125

Without trimming (classical mean):

7 2.01+...+8.40 _ 2456
B 10 T

Huge distortion due to the outlier. Thus, the a-trimmed mean correctly reflects the true process center (~2.0
mm), whereas the classical mean incorrectly indicates a large shift.

2.10 Applying the EWMA Formula
Let A = 0.2, and let the in-control mean be po = 2.00 mm.

EWMA update:

Z, =29+ 1 -0z,

For Sample 1:

Z, = 0.2(2.0125) + 0.8(2.0000) = 2.0025

For Sample 2 (trimmed mean = 2.010):

Z, = 0.2(2.010) + 0.8(2.0025) = 2.0040

Even though Sample 1 had a huge outlier (8.40 mm), the chart remains stable and does not falsely signal,
unlike classical EWMA.

2.11 Control Chart Interpretation

A
UCL=2.00+1L m(fa

A
LCL =2.00—-1L md’a
Suppose the limits are:
e LCL=196mm
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e UCL =2.04 mm
Plot Interpretation
e 7:=2.0025 — inside limits
e 7.=2.0040 — inside limits
o Sample 3 also remains stable because trimming removed the extreme 12.50 mm value.
The a-T-EWMA chart correctly indicates that the process is still in control, despite heavy contamination.

Table 1. Performance of the a-Trimmed EWMA Control Chart Under Lognormal Process (n = 10,
a=0.20, 1= 0.20, ARLo = 370)

Parameter / Shift Level Description Value
Process distribution Lognormal (moderately skewed) —
Subgroup size n=10 —
Trimming proportion a = 0.20(10% trimmed from each tail, k = 1) —
EWMA smoothing parameter A=0.20 —
Control limit width Lchosen so ARLo = 370 —
Simulation replications M = 3000 —
In-control ARL ARLy ~ 370
Shift size § = 0.6 Small shift ARL;=21.8
Shift size § = 1.3 Moderate shift ARL;= 6.6
Shift size § = 2.7 Large shift ARL=2.6

Table 1 presents the performance of the a-Trimmed EWMA control chart for a lognormal process with
subgroup size n = 10, trimming proportion & = 0.20, and smoothing parameter A = 0.20. Control limits
were calibrated to achieve ARL ~ 370. The chart detects small, moderate, and large mean shifts with ARL;
values of approximately 21.8, 6.6, and 2.6, respectively, based on 3000 Monte Carlo simulations

3 Discussion

The Phase I outcomes give a very clear picture of stability of the processes. The trimmed mean EWMA
chart as indicated in Figure 1 retains all the points within the control limits. There is no abnormal fluctuation
in the process. This implies that the trimmed estimator gives a consistent and stable baseline. In the same
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way, Figure 2 shows the same trend in the case of the basic EWMA chart. Both techniques are effective to
use in cases when the process is stable and does not have a high level of skewness.

Phase II shows the differences better. Figure 3 indicates that the trimmed mean EWMA chart is quick in
responding to the shift that happens to the mean when the shift is early. The chart identifies the shift at time
44 just a couple of steps beyond the actual change at time 40. This rapid reaction is an indication of the
strength and sensitivity of the trimmed estimator as the data can be skewed or that it has extreme values in
some instances. Contrary to this, Figure 4 depicts that the classical EWMA chart does so later at time 47.
Such a delay is a manifestation of efficiency loss when classical means are used to skewed or contaminated
data.

All in all, the findings are in line with the core concept of the suggested strategy. The trimmed mean EWMA
chart performs well at Phase I and better shift detection at Phase II. It provides a handy compromise between
the strength and delicateness. Extreme observations and distorted patterns may influence the use of mean-
based EWMA charts. The median based charts are strong and can lose efficiency. To address this gap, the
trimmed mean gives the estimator the capacity to respond to outliers, but at the same time diminishes the
power of outliers. This renders the technique appropriate in most contemporary manufacturing
environments, including cycle-time monitoring, analysis of tool-wears and defect-rate control. False alarms
and small shifts that can be detected in the early stages of the process are crucial in quality reduction in
such environments.

4. Conclusion

This paper postulated an EWMA control chart using the trimmed mean to overcome the problem of skewed
or heavy tailed data of the process. The results indicate that the trimmed EWMA chart is effective in
stationary conditions and responds faster to changes in the mean as compared to the classical EWMA chart.
The technique is resistant to extreme values and sensitive to smooth changes.

The results of simulation prove that trimming enhances performance in detection, particularly in the case
of asymmetric underlying distribution. The clipped EWMA chart minimizes the number of false alarms
and reduces the delay between the signal to change the shift. All these benefits render it a powerful
substitute of traditional EWMA charts in actual industrial set ups.

These findings can be utilized in the future. The potential options are adaptive trimming rules, bootstrap-
based control limits, and verification based on actual manufacturing datasets. It is even possible that such
extensions will reinforce the usefulness of trimmed EWMA charts in contemporary process monitoring.
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