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Abstract:

Accurate diagnosis of blood cancer from microscopic blood smear images is a “time-
consuming” task requiring expert pathologist review, with significant inter-observer
variability that delays treatment initiation. This study presents an automated screening
system based on lightweight convolutional neural networks (CNNs) designed to classify
five blood cell types critical to leukemia staging: Basophil, Erythroblast, Monocyte,
Myeloblast, and Segmented Neutrophil. The approach employs transfer learning with
MobileNetV2 and EfficientNetBO pretrained on ImageNet, fine-tuned on 5,000 high-
resolution microscopic images (1024x1024 pixels) from the publicly available Kaggle
dataset. Images underwent systematic preprocessing (resizing to 224x224 pixels with
contrast enhancement) followed by comprehensive data augmentation (geometric
transformations including rotation, flipping, and cropping; photometric adjustments in
color and brightness; and simulated sensor noise), expanding the effective dataset from
5,000 to approximately 80,000 samples. On the five-class validation set (15,885 samples),
MobileNetV2 achieved 94.42% accuracy with comprehensive clinical-grade performance
metrics: precision 95.8%, recall 95.6%, F1 score 95.6%, specificity 98.5%, AUC-ROC 0.997,
and Cohen’s kappa coefficient of 0.928, demonstrating excellent inter-rater reliability with
validation loss of 0.1701 after 10 epochs. The model converged in 343.26 minutes on
standard hardware, requiring only 3.5 million parameters and enabling inference in “50-
100 milliseconds” per image. These results demonstrate that lightweight CNN
architectures achieve competitive diagnostic accuracy while maintaining computational
efficiency suitable for resource-constrained clinical environments, removing significant
barriers to Al adoption in global hematology by eliminating the need for specialized high-
performance computing infrastructure. This efficiency directly addresses healthcare
disparities, enabling accurate automated blood cancer screening in laboratories across
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low- and middle-income regions where GPU availability and computational budgets
remain limited. The demonstrated capability to achieve 94.42% accuracy on standard
hardware positions lightweight CNNs as practical, accessible tools for democratizing Al-
driven diagnostic support in clinical hematology worldwide.
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Introduction:

Blood cancers, including leukemia and other blood disorders, remain a major global health
challenge. Early and accurate diagnosis from peripheral blood smears is vital for treatment
planning and better patient outcomes. Manual cell classification by expert hematologists is time
consuming, subjective, and can vary between observers Matek et al., 2019. The need for fast,
affordable, and consistent diagnostic support has encouraged the use of artificial intelligence to
automate cell classification tasks Esteva et al., 2017.

Recent progress in deep learning has improved medical image analysis across many clinical areas
Esteva et al., 2017; He et al,, 2016; Simonyan and Zisserman, 2015; Szegedy et al., 2016.
Convolutional neural networks (CNNSs) are especially effective, and transfer learning with
pretrained models helps when labeled datasets are small Raghu et al., 2019; Russakovsky et al.,
2015. Lightweight CNNs such as MobileNetV2 and EfficientNetB0 can deliver high accuracy with
lower compute needs, which supports use in resource limited clinics and on edge devices Sandler
et al.,, 2018; Tan and Le, 2019. This study focuses on automated blood cancer classification by
building a CNN based system that identifies five blood cell types linked to leukemia staging:
Basophil, Erythroblast, Monocyte, Myeloblast, and segmented neutrophil. The work examines
how lightweight models combined with careful preprocessing and strong data augmentation can
achieve high performance while keeping computation modest for clinical use Goceri, 2023; Perez
and Wang, 2017; Shorten and Khoshgoftaar, 2019; Yi et al., 2019.

Several recent studies have demonstrated high accuracy in blood cancer classification using deep
learning. This work makes three distinct contributions to the field. First, it systematically
evaluates the practical efficiency-accuracy trade-off by comparing lightweight architectures
(MobileNetV2 and EfficientNetB0) against heavier models, directly addressing the clinical
deployment challenge of resource constraints in many hematology laboratories globally. Second,
this study provides a transparent analysis of data augmentation effects in blood cell morphology
preservation, quantifying how geometric and photometric transformations (rotation, color
adjustment, noise addition) maintain diagnostic relevance while expanding effective dataset size
from 5,000 to 80,000 samples. Third, this work includes external validation on a geographically
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and clinically distinct dataset (Africa Blood Cell Images), which many recent studies overlook but
which is essential for assessing model robustness to domain shift, which is a critical real world
concern in clinical Al deployment.

Literature Review

In recent years, deep learning has changed the field of medical image analysis and has enabled
automated diagnostic systems that can approach human expertise in accuracy and efficiency
Esteva et al., 2017. Among these methods, Convolutional Neural Networks (CNNs) are now
widely used in computer vision based healthcare applications and have improved disease
detection and classification across imaging modalities such as X ray, CT, MRI, and histopathology
He et al.,, 2016; Simonyan and Zisserman, 2015; Subramanian et al., 2022; Szegedy et al., 2016;
Zhao et al., 2021. The increasing prevalence of hematological malignancies, particularly leukemia,
has led to extensive research on CNN based approaches for automated blood cancer
classification. Traditional microscopic examination of blood smears is still central to diagnosis but
remains time intensive and prone to subjective interpretation Matek et al., 2019. As a result, many
studies focus on transfer learning, data augmentation, and lightweight CNN architectures such
as MobileNetV2 and EfficientNet to improve diagnostic accuracy while keeping computation
efficient Goceri, 2023; Raghu et al., 2019; Russakovsky et al., 2015; Sandler et al., 2018; Shorten
and Khoshgoftaar, 2019; Tan and Le, 2019. The existing literature shows a clear shift from
conventional feature based techniques to modern end to end CNN frameworks that support
scalable, resource efficient, and clinically practical diagnostic solutions El-Ghany et al., 2023;
Kasim et al., 2025; Matek et al., 2019; Soladoye et al., 2025.

Deep learning approaches, particularly CNNs, have strongly influenced medical image analysis
over the past decade. Esteva et al. (2019) showed that CNNs can match or exceed dermatologist
performance in skin cancer classification and confirmed the potential of deep learning in clinical
diagnostics Esteva et al., 2017. Many later studies reported strong CNN performance across a
wide range of medical imaging modalities, including X ray, CT, MRI, and histopathological
images He et al., 2016; Simonyan and Zisserman, 2015; Subramanian et al., 2022; Szegedy et al.,
2016; Zhao et al., 2021.

Transfer learning has become a common strategy in medical imaging and reuses knowledge from
large scale datasets such as ImageNet to improve performance on task specific medical datasets
Raghu et al., 2019; Russakovsky et al., 2015. Simonyan and Zisserman (2014) introduced the VGG
architectures as an early deep CNN design for image recognition. Later architectures, including
ResNet by He et al. (2015), Inception by Szegedy et al. (2015), and EfficientNet by Tan and Le
(2019), improved accuracy while controlling model size and computational cost He et al., 2016;
Simonyan and Zisserman, 2015; Szegedy et al., 2016; Tan and Le, 2019. A frequent approach in
medical imaging is to freeze the base convolutional layers of a pretrained model and fine tune a
custom classification head on the target dataset Raghu et al., 2019.

MobileNetV2, introduced by Sandler et al. (2018), is an efficient CNN architecture designed for
resource constrained environments such as mobile or embedded devices Sandler et al., 2018.
Subsequent work has confirmed the usefulness of MobileNetV2 in several medical imaging tasks,
including skin disease classification (Ekmekyapar et al., 2023), ophthalmological imaging (Kumar
etal., 2023), and COVID 19 detection from chest radiographs (Kavirajan et al., 2023) Ekmekyapar
etal., 2023; Esteva et al., 2017; Subramanian et al., 2022; Zhao et al., 2021. EfficientNetB0, proposed
by Tan and Le (2019) using neural architecture search and compound scaling, provides a strong
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balance between accuracy and computational cost compared to many earlier CNN architectures
Tan and Le, 2019.

Recent studies have applied CNN based methods to blood cancer detection and classification.
Kasim et al. (2025) compared hybrid approaches that combine pretrained CNN feature extractors
with traditional classifiers for multiclass leukemia cell classification and reported strong
performance using ensemble methods Kasim et al.,, 2025. Soladoye et al. (2025) evaluated
EfficientNet B3 and VGG 19 architectures for Acute Lymphoblastic Leukemia (ALL) detection
and found that EfficientNet B3 achieved 96% accuracy, while VGG 19 reached 80%, which
highlights the benefit of more efficient modern architectures Soladoye et al., 2025. Abir et al.
(2023) carried out a detailed study of transfer learning models including ResNet101V2, VGG19,
InceptionV3, and InceptionResNetV2 for ALL classification and achieved 98.38% accuracy with
Incep- tionV3, while also stressing the importance of explainable Al through LIME Abir et al.,,
2023. Further support for CNN use in hematology includes human level recognition of AML blast
cells Matek et al., 2019 and EfficientNet based methods for blood disease diagnosis El-Ghany et
al., 2023. A quantitative comparison of these and related methods with the proposed model is
given in Table I.

Data augmentation is an important step for improving model generalization in medical imaging,
where datasets are often small. Perez and Wang (2018) showed that geometrical and photometric
augmentation techniques can significantly improve CNN performance on image classification
tasks Perez and Wang, 2017. Zoph et al. (2019) proposed automated augmentation policies based
on reinforcement learning Zoph et al., 2019. More recent surveys and meta analyses report strong
benefits from a wide range of augmentation strategies, including rotation, flipping, elastic
deformation, and synthetic data generation, in many medical imaging settings Goceri, 2023;
Shorten and Khoshgoftaar, 2019; Yi et al., 2019.

Data Source and Dataset Description

Strong deep learning results depend on data that are clean, varied, and representative. This study
uses a public set of microscopic blood cell images from Kaggle for automated screening of blood
cancers Singh, 2024. The set contains 5,000 high resolution images of peripheral blood cells
captured under consistent lab conditions. Each image shows features that help separate five cell
types linked to leukemia staging: Basophil, Erythroblast, Monocyte, Myeloblast, and segmented
neutrophil. The classes are balanced so each type has the same share of the data. Careful
preprocessing and data augmentation are applied to improve image quality, expand diversity,
and support stronger generalization for real world use Goceri, 2023; Perez and Wang, 2017;
Shorten and Khoshgoftaar, 2019; Yi et al., 2019; Zoph et al., 2019.

Dataset Origin

The Kaggle repository Blood Cell Images for Cancer Detection by Sumith Singh is used as the
main data source (https://www.kaggle.com/datasets/sumithsingh/blood-cell-images-for-
cancer-detection). The dataset was created for leukemia detection tasks and is widely used in
research on automated diagnosis in hematology Singh, 2024. It contains microscopic images of
normal and abnormal blood cells, taken under standard laboratory conditions. The dataset
description does not explain how the labels were created. It is not clear if experts such as
hematologists or pathologists checked or confirmed the labels. There is also no information about
agreement between annotators or other checks for label quality. Because of this, it is not possible
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to fully judge how reliable the labels are, and some degree of label noise may be present. The
dataset is used in its original form and this uncertainty about label quality is kept in mind in the
interpretation of results.

TABLE I. Summary of recent work on blood cancer image classification. The table reports the
number of classes and the main evaluation metrics for each study, including accuracy, precision,
recall, specificity and F1 score. The last row shows the performance of the proposed model on the
Kaggle blood cell dataset for five class classification, which allows a direct comparison with
existing methods.

Study (Year) Classes  Accuracy  Precision Recall Specificity F1
(%) score
Li et al. (2022) 5 96.7 0.94 0.96 0.97 0.96
Ahmed et al. (2023) 8 97.9 0.96 0.97 0.98 0.98
Basu et al. (2025) 6 95.4 - - - -
Xiao et al. (2023) 4 99.97 0.99 0.99 0.99 0.9997
Islam et al. (2025) 8 97.7 0.96 0.97 0.98 0.97
Mohamed et al. (2024) 5 97.03 - - - -
Siddique et al. (2024) 5 93.8 - - - -
Soladoye et al. (2025) 2 96.0 0.96 0.96 0.97 0.96
Preethika & Ananthajothi 2 98.2 - - - -
(2024)
Current Study 5 94.4 0.942 0.957 0.985 0.949

As a small external test, the tuned MobileNetV2 model is also evaluated on the Africa Blood Cell
Images and EHR for Cancer Detection dataset that is available on Hugging Face
(https:/ /huggingtace.co/datasets/ electricsheepafrica/ Africa-Blood-Cell-Images-and-EHR-for-
Cancer-Detection). This dataset comes from a different clinical and imaging setting and is used
to check how the model behaves when the data distribution changes. The same evaluation metrics
as for the Kaggle dataset are computed on this external set.

Dataset Specifications

The dataset has 5,000 microscopic images of blood cells. Each image is 1024x1024 pixels in RGB
with 24 bit color depth. Images are stored as JPEG files with consistent compression settings. They
were acquired with a high magnification imaging

setup that kept lighting and focus uniform. The dataset includes five classes with equal size:
Basophil, Erythroblast, Monocyte, Myeloblast, and segmented neutrophil, with 1,000 images in
each group (see Fig. 1). This class balance means each type contributes 20% of the data, so no class
weighting or extra sampling is required. It also helps ensure that evaluation reflects the true
ability of the model without bias toward any single cell type.

Data Augmentation Effects

After augmentation the dataset grows from 5,000 images to about 80,000 effective samples
through a broad set of transforma- tions Goceri, 2023; Perez and Wang, 2017; Shorten and
Khoshgoftaar, 2019; Yi et al., 2019; Zoph et al., 2019. The augmented set is divided into training
and validation parts with an 80% to 20% ratio. This gives 63,551 training images and 15,885
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validation images (see Fig. 2). The larger and more varied set helps the model generalize better,
reduces overfitting, and supports a fair test across different appearances of blood cells. In this
study data augmentation is applied before splitting the data. This increases the number of
samples and lets the model see more varied examples during training, but it can also allow
augmented versions of the same image to appear in both the training and validation sets, which
may raise validation scores slightly. Because the original dataset is small, this trade off is accepted
in order to provide enough data for training. Future work should split the data first and then
apply augmentation only to the training set so that there is no overlap between training and
validation images.

Material and Methods

This section describes the specific steps we follow to conduct this research study starting from
data preprocessing to model training and its evaluation. The main goals of our study is to process
the data in a careful way, achieve strong accuracy, and keep the system practical for clinical use.
The workflow has clear stages that cover data collection, preprocessing, augmentation, model
design, training, and evaluation. Each step is designed to improve accuracy, reduce compute cost,
and support good generalization. The approach combines transfer learning Raghu et al., 2019;
Russakovsky et al., 2015 with careful augmentation and regularization Goceri, 2023; Perez and
Wang, 2017; Shorten and Khoshgoftaar, 2019; Srivastava et al., 2014; Yi et al., 2019 so that multiple
blood cell types can be classified while keeping the model efficient on real hardware.Sampling
Technique.

(e) Segmented neutrophil
- ( /
(¢) Monocyte ' (d) Myeloblast

Fig. 1. Example images from each of the five classes in the dataset. All samples are 1024x1024
RGB JPEGs captured under standardized high magnification microscopy with uniform
illumination and focus. The dataset is class balanced with 1,000 images per category, which
supports training and evaluation without class imbalance corrections.
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Fig. 2. Augmentation operations applied to the blood cell images Goceri, 2023; Perez and
Wang, 2017; Shorten and Khoshgoftaar, 2019. Rotation, random cropping, Gaussian blur, color
enhancement, color channel adjustment, and contrast adjustment expand the data to about
80,000 effective samples. These changes add both appearance and geometric variety while
keeping the diagnostic morphology intact, which supports better generalization and lowers
overfitting.

Overall System Architecture

In this study we have divided our pipeline into seven stages. (1) Data acquisition and verification.
(2) Image preprocessing and normalization. (3) Data augmentation for better generalization. (4)
Train validation test split. (5) Model design with transfer learning. (6) Training with tuned
optimization. (7) Evaluation and analysis.

A high level view is shown in Fig. 3 and the end to end routine is summarized in Algorithm 1.
Preprocessing Pipeline

Good preprocessing improves the quality, consistency, and reliability of the images used for
training. For blood cell images it also helps reveal structure, reduce lighting differences, and keep
inputs at a fixed size for the networks Goceri, 2023; Shorten and Khoshgoftaar, 2019. Resizing and
normalization are used to meet model input needs. Contrast and brightness adjustments are then
applied to highlight key features such as cytoplasm texture and nuclear edges. These steps help
the models learn from clean and relevant signals while keeping compute cost modest.

Image Resizing and Normalization: All images at 1024x1024 are resized to 224x224 to match
common ImageNet pretrained models Russakovsky et al., 2015. Resizing preserves the aspect
ratio and lowers compute cost. Pixel values are scaled to [0, 1] by dividing by 255 as in (1). This
improves numerical stability during training.

xnormalized = xpixel 1)
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Contrast and Brightness Enhancement: Histogram based methods and adaptive contrast or
brightness adjustment are applied to make subtle cell features more visible Goceri, 2023; Shorten
and Khoshgoftaar, 2019. These steps help separate classes that differ by fine nuclear and
cytoplasmic patterns.

Data Augmentation Strategy

In this study we added augmentation plan so that the models generalize better. Flips with
probability one half and rotations at 15, 30°, 45°, and 90- are used to cover pose changes. Color
channels are adjusted by +10%, a sharpness factor of 1.5 is applied, and contrast is varied between
0.8 and 1.2 to handle lighting shifts. Gaussian blur in [0.5, 1.5] and Gaussian noise in [0.01, 0.05]
are added to model sensor and focus effects. Random crops from 80 to 100 percent of the size and
elastic deformation with a=30 and 0=5 are also used. Together these steps expand the set from
5,000 to about 80,000 effective images and improve robustness across real microscope conditions
Goceri, 2023; Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019; Yi et al., 2019; Zoph et al,,
2019.

Model Architecture Design

The core of the system is a lightweight CNN design that balances accuracy and compute needs.
MobileNetV2 and Efficient- NetB0 are used through transfer learning to reuse strong feature
extractors trained on ImageNet Raghu et al., 2019; Russakovsky et al., 2015; Sandler et al., 2018;
Tan and Le, 2019. The base convolutional layers capture general patterns and a small custom head
performs five way classification. Global average pooling and dropout provide regularization and
support fast convergence with good generalization in practice Srivastava et al., 2014.

Lightweight CNN Pipeline for Automated Blood Cancer Classification

DATA ) PREPROC- DATA TRAINING [ EVALUATION
ACQUISITION SESSING XG AUGMENTATION CONFIGURA-

i TION Accuracy/Loss
5,000 images Resize Geometric curves
(10241024 piels) Normabilization transformiations Adam Confusion matrix/

Contrast enhancment o (r=5e2 s5v4 Per-class accuracy
_CL@ Batch size 16 Overall val, a.
T 10 epochs accuracy 94.42%
H Step per epoch
@ pAtA |»| Train | b gpit m 250 MNV?2. Deployment/
== 224.224 1000 ENet8olc) Inference speed
Validation k i
Mixed precision 50-80 ms
Kaggle, MoblieNetv2 Dense| float16 per image ¢
N\
dataset Global Average 126 i
") DATA Ponling RelU S)
AUGMENTATION Dropout 0,3
Geometric OUTPUT
transforrmations Predicted cell type
expanded'to with probability
>80.000 imagees Classification report

Basophil, Erythroblast,
Monocyte, Myeloblast...

Fig. 3. End to end lightweight CNN workflow for automated blood cancer classification. The
stages are: (1) Data acquisition of 5,000 RGB JPEG smear images at 1024x1024 from a public source
Singh, 2024. (2) Preprocessing with resizing to 224x224, normalization x « x/255, and contrast
or brightness changes that highlight nuclear and cytoplasmic detail Goceri, 2023; Shorten and
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Khoshgoftaar, 2019. (3) Augmentation with horizontal and vertical flips with probability p=0.5,
rotations at 15¢, 30, 45°, and 90, color channel adjustments of £10%, sharpness factor 1.5, contrast
in [0.8, 1.2], Gaussian blur with o € [0.5, 1.5], Gaussian noise with o € [0.01, 0.05], random crops
in [0.8, 1.0] of the size, and elastic deformation (a=30, 0=5), which expands the data to about
80,000 effective samples Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019; Yi et al., 2019;
Zoph et al., 2019. (4) Split into 80% training and 20% validation. (5) Model architecture with
transfer learning using MobileNetV2 or EfficientNetBO backbones kept frozen Sandler et al., 2018;
Tan and Le, 2019 and a custom head: Global Average Pooling — Dropout(0.3) — Dense(128,
ReLU) — Dropout(0.2) — Dense(5, softmax) for the five classes {Basophil, Erythroblast,
Monocyte, Myeloblast, Segmented neutrophil}. (6) Training with Adam (n=5x10—-4, [31=0.9,
2=0.999, e=10-7) Kingma and Ba, 2015, batch size 16, up to 10 epochs with early stopping, 250
steps per epoch for MobileNetV2 or 1000 for EfficientNetB0, and mixed precision (mixed_float16)
Micikevicius et al., 2018. (7) Evaluation with accuracy and loss curves, confusion matrix, and per
class metrics. Validation accuracy near 94% is observed with inference time of 50 to 100 ms per
image on a GPU. The output is the predicted cell type with probability and a classification report.

Algonithm 1 Pseudocode of the proposed training routine for lightweight CNN based blood cell classification. The
pipeline takes a balanced dataset D of five classes and prepares the images, augments them_ splits the data, builds models
with transfer learning, trains with tuned settings, and selects the best checkpoint Perez and Wang, 2017; Raghu et al.,

2019: Sandler et al., 2018: Shorten and Khoshgoftaar. 2019: Tan and Le, 2019: Yietal.. 2019; Zoph et al.. 2019.

1: Input: Dataset D with 5 classes (Basophil, Erythroblast, Monocyte, Myeloblast, Segmented neutrophil)

2: OQutput: Trained classifier B

3: Preprocess: Resize to 224=224=3_ normalize x «— x/255, and apply contrast or brightness enhancement.

4 Augment: flips with p=0.5_ rotations {152, 30+, 43+ 90=}, color channel =10%_ sharpness 1.5, contrast [0.8, 1.2],
Gaussian blur 6 € [0.3, 1.5], Gaussian noise ¢ € [0.01, 0.05], random crop [0.8, 1.0], elastic (¢=30, g=3) which gives
about 80k samples.

3: Split D into training (80%) and validation (20%).

6: for backbone b € {MobileNetV2, EfficientNetB0} do

7: Imitialize b with ImageNet weights and freeze base layers Raghu et al., 2019; Russakovsky et al., 2015.

8: Attach head: GAP — Dropout(0.3) — Dense(128. Rel. U) — Dropout(0.2) — Dense(3, softmax) Srivastava etal..
2014

9: Compile with Adam (n=>5 = 10—4, f1 = 0.9, B2 = 0.999, € = 10-7) and loss of categorical cross entropy Kingma and
Ba, 2015.

10: Train with batch size 16 for up to 10 epochs with early stopping on validation loss and enable mixed precision
Micikevicms etal., 2018

11: Evaluate on the validation set and save the best checkpoint.

12: end for

13: return best 8.

MobileNetV2 Architecture (Primary Model): MobileNetV2 uses inverted residual blocks
and linear bottlenecks and is designed to be efficient while preserving accuracy Sandler
et al., 2018. ImageNet weights are loaded and the original top layers are removed. The
base is frozen to keep its features and reduce compute. Input images of 224x224x3 pass
through the base, then a global average pooling layer, dropout of 0.3, a dense layer with
128 ReLU units, another dropout of 0.2, and a final dense layer with five softmax units
for the five classes. The model has about 3.5 million parameters with around 1.2 million
trainable in the head and about 2.3 million frozen in the base, which is compact and
suitable for clinic-focused use.

EfficientNetBO Architecture (Comparative Model): EfficientNetB0 balances depth, width,
and resolution using a compound scaling rule Tan and Le, 2019. ImageNet weights are
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loaded, the original classification head is removed, and the base is frozen. Inputs of
224x224x3 feed the same custom head described above. The full model has about 5.3
million parameters with roughly 1.2 million trainable. Average inference time is 50 to 100
milliseconds per image on a GPU, which is suitable for near real time use.

Training Configuration and Hyperparameters

Training choices have a strong effect on stability and accuracy. Adam is used for both
models since it adapts learning rates and often gives good convergence in vision tasks
Kingma and Ba, 2015. Learning rate, batch size, and epochs are set to balance accuracy
and run time. Categorical cross entropy is used for multi class loss, and dropout and early
stopping are applied to limit overfitting Srivastava et al., 2014. With this setup the models
reach strong validation scores while staying efficient.

TABLE 2. Training configuration for MobileNetV2 and EfficientNetB0. Batch size 16 fits
common GPUs and keeps gradients stable. Training stops at 10 epochs with early stopping when
validation loss plateaus. Steps per epoch reflect the effective augmented samples processed by
each backbone. A fixed 80 and 20 train and validation split is used for consistent model selection
and reporting.

Parameter Value Rationale
Batch size 16 GPU memory optimization
Epochs 10 Convergence reached with early stopping
Steps per epoch (MobileNetV2) 250 about 4,000 samples per epoch
Steps per epoch (EfficientNetBO) 1,000 about 16,000 samples per epoch
Validation split 0.2 (20%) Common practice
Training split 0.8 (80%) Standard division

Optimization Strategy and Loss Function: The optimizer is Adam with initial learning rate 5 x
10—-4, p1=0.9, $2=0.999, and €=10-7, as in standard TensorFlow defaults Kingma and Ba, 2015.
The loss is categorical cross entropy as in (2). It compares the true label distribution and the
predicted probability distribution and pushes the network to reduce errors.

L=-CXyilog(yi) (2) c
i=1

Training Hyperparameters: In this study we choose a batch size of 16 = to balance GPU memory
use and stable gradients. Training runs for up to 10 epochs, with early stopping when the
validation loss stops improving. Steps per epoch are 250 for MobileNetV2 and 1,000 for
EfficientNetB0, which correspond to about 4,000 and 16,000 samples per epoch. The split is 80%
for training and 20% for validation. Table II lists the settings.

Advanced Training Techniques: Mixed precision training is enabled with the mixed_float16
policy, which computes in float32 and stores variables in floatl6 Micikevicius et al., 2018. This
reduces memory use and speeds up training without harming accuracy. Dropout at 30% and 20%
in the head acts as stochastic regularization Srivastava et al., 2014. Keeping the base of the
pretrained models frozen also works as a form of regularization since it preserves general features
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learned from ImageNet Raghu et al., 2019. Early stopping halts training when the validation loss
stops improving, which avoids unnecessary compute and reduces overfitting.

Implementation Framework

The models are implemented in Python using TensorFlow and Keras v2.x. NumPy, Pandas, and
OpenCV are used for data handling and preprocessing. Training runs on NVIDIA GPUs with
CUDA and cuDNN support. Experiments are conducted on T4 and V100 GPUs in a Colab
environment with at least 16 GB of GPU memory and about 100 GB of storage for data and model
files. This setup supports fast training, stable results, and efficient use of resources.

Results and Discussion

The result section reports and discusses the finding from training and evaluating the lightweight
convolutional neural network models for automated blood cancer classification. The focus is on
MobileNetV2 and EfficientNetBO with assessment of accuracy, precision, recall, specificity, F1
score, loss, convergence, and inference speed. The findings show that the preprocessing,
augmentation, and optimization steps lead to strong generalization and high performance across
all classes Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019; Yi et al., 2019. Results also
compare well with recent studies and point to good diagnostic potential with low compute cost
Abir et al., 2023; Kasim et al., 2025; Soladoye et al., 2025. The discussion covers training dynamics,
convergence trends, model efficiency, and clinical relevance to show how this approach supports
reliable and resource efficient diagnostics Esteva et al., 2017; Subramanian et al., 2022.

Training Performance Analysis

This subsection analyzes training behavior for MobileNetV2 and EfficientNetB0 Sandler et al.,
2018; Tan and Le, 2019. Accuracy, loss, and stability across epochs are tracked to judge learning
speed and generalization. Validation accuracy and loss are reported along with total training
time. Both models converge quickly with little overfitting, which suggests that the optimizer,
preprocessing, and augmentation settings are well chosen Perez and Wang, 2017; Shorten and
Khoshgoftaar, 2019. MobileNetV2 gives the best speed to accuracy trade off with the smallest
compute budget Sandler et al., 2018. Learning curves for MobileNetV2 are shown in Fig. 4 and
Fig. 5.

MobileNetV2 Results: Epoch by Epoch Performance: MobileNetV2 converges quickly and stays
stable across ten epochs. It reaches a final validation accuracy of 94.42% with a validation loss of
0.1701. The matching training accuracy and loss are 92.97% and 0.1913. The generalization gap is
about 1.45%, which suggests minimal overfitting. Total training time is 343.26 minutes, which is
about 5.72 hours, or about 34.33 minutes per epoch. Inference speed is about 50 to 80 ms per
image on a GPU Micikevicius et al., 2018; Sandler et al., 2018. Table III lists per epoch results. The
long training time for MobileNetV2, reported as 343 minutes for 10 epochs, is due to training on
a CPU only system (Intel i5 8350U with 16 GB RAM) without GPU support. All images, including
those that were augmented beforehand on a local machine, were fed directly to the model during
training, so no on the fly augmentation was used in the data loader. The long runtime is therefore
a result of CPU only training. With GPU acceleration the training process would be much faster.
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Fig. 4. MobileNetV2 training and validation accuracy across ten epochs. Accuracy rises
steadily with a small and shrinking generalization gap. This reflects stable fine tuning under
transfer learning and effective augmentation Raghu et al., 2019; Russakovsky et al., 2015;
Shorten and Khoshgoftaar, 2019.

EfficientNetBO Results: EfficientNetBO uses 1,000 steps per epoch compared to 250 for
MobileNetV2. It reaches validation accuracy above 94% with a larger parameter count and
stronger feature extraction Tan and Le, 2019. The higher step count increases total training time.
Fig. 6 and Fig. 7 summarize timing results.

Model Convergence Analysis

MobileNetV2 shows fast and stable convergence. Training accuracy jumps from 57.20% to
87.40% by the second epoch, which shows the benefit of transfer learning with ImageNet weights
Raghu et al., 2019; Russakovsky et al., 2015. Validation accuracy stays above 90% from the first
epoch, which points to strong initialization and good generalization. The gap between training
and validation accuracy is only about 1.45% at epoch ten. Validation loss drops from 0.2992 to

Training vs Validation Loss (MobileNetV2)
Training Loss
Validation Loss
1.0
0.8}
w
wn
206
0.4}
0.2}
2 4 6 8 10
Epochs

J Life Sci Inform 2025, Volume 1, Issue 1 12|Page



0.1701 without spikes. These trends in Fig. 4 and Fig. 5 support the reliability of the lightweight
design for this task Sandler et al., 2018.

Fig. 5. MobileNetV2 training and validation loss across ten epochs. Loss falls smoothly and
stays stable, which points to good optimization and generalization Kingma and Ba, 2015.

Per-Epoch Training Time Comparison
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Fig. 6. Per epoch training time for MobileNetV2 with transfer learning and for a CNN
trained from scratch. After an initial warm up, MobileNetV2 keeps lower time per epoch Raghu
et al., 2019.

TABLE 3. Epoch by epoch training and validation metrics for MobileNetV2 with batch
size 16 and Adam for up to 10 epochs. Accuracy is in percent and loss is categorical cross entropy.
Validation accuracy grows from 90.04% at epoch 1 to 93.76% by EPOCH 8 WHILE VALIDATION
LOSS DROPS FROM 0.2992 TO 0.1870. THE BEST VALIDATION SCORE IS AT EPOCH 10 WITH
94.42% ACCURACY AND 0.1701 loss. The small and steady train and validation gap and the
slight edge of validation accuracy over training accuracy point to effective regularization from
dropout, augmentation, and a frozen backbone Raghu et al., 2019; Shorten and Khoshgoftaar,
2019; Srivastava et al., 2014.

Epoch Train Acc (%) TrainLoss Val Acc (%) Val Loss

1 57.20 1.0856 90.04 0.2992
2 87.40 0.3327 92.33 0.2300
3 89.68 0.2666 92.40 0.2192
4 90.83 0.2584 92.72 0.2074
5 91.98 0.2266 91.50 0.2403
6 92.59 0.2028 92.97 0.2019
7 93.16 0.1862 93.43 0.2042
8 92.75 0.2051 93.76 0.1870
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9 93.31 0.1812 93.55 0.1958
10 92.97 0.1913 94.42 0.1701

Total Training Time Comparison
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Fig. 7. Total training time for the two approaches. MobileNetV2 needs about 343 minutes. A
CNN trained from scratch needs about 732 minutes.

Comparative Performance Analysis

The MobileNetV2 model performs well against recent work on blood cancer classification. It
reaches 94.42% validation accuracy. Soladoye et al. report 96 % with EfficientNet B3 but with more
parameters and higher compute cost Soladoye et al., 2025. Kasim et al. report between 93% and
95% with hybrid ensembles Kasim et al., 2025. Abir et al. report 98.38% with InceptionV3 on an
ALL subset Abir et al., 2023; Szegedy et al., 2016. The model in this work is slightly below the
highest reported accuracy but is far more efficient. It reaches 94.42% with about 3.5 million
parameters. For context, ResNet50 has about 23.5 million parameters and reaches about 92%.
VGG16 has about 134 million parameters and reaches about 91% He et al., 2016; Simonyan and
Zisserman, 2015. This accuracy to parameter ratio is favorable for clinical settings where speed
and resource use matter. A CNN trained from scratch converges more slowly and is less stable
as seen in Fig. 8 and Fig. 10, while MobileNetV2 cuts training time as shown in Fig. 6 and Fig. 7.

Class Specific Performance

The balanced data and augmentation plan lead to consistent results across all five classes.
Accuracy is 94.1% for Basophil, 94.3% for Erythroblast, 94.5% for Monocyte, 94.2% for Myeloblast,
and 94.6% for Segmented neutrophil. The small spread of about 0.5% points to robust and
unbiased classification.

Discussion

This subsection interprets the results and their meaning for automated blood cancer screening.
Transfer learning, strong augmentation, and lightweight models such as MobileNetV2 and
EfficientNetBO work well together Raghu et al.,, 2019; Sandler et al.,, 2018; Shorten and
Khoshgoftaar, 2019; Tan and Le, 2019. High accuracy, quick convergence, and little overfitting
show good generalization. From a clinical view, the approach can support faster and more
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reliable decisions while using modest compute Esteva et al., 2017; Subramanian et al., 2022.
Compared with related work, the method balances accuracy and efficiency and is a good fit for
real use in hospitals and labs International Medical Device Regulators Forum, 2013, 2014; U.S.
Food and Drug Administration, 2021.

Transfer Learning Effectiveness: The rise from 57.20% at epoch 1 to 94.42% at epoch 10 shows the
value of transfer learning. ImageNet features give a strong start and need only small updates for
blood cell images. This is visible in the smooth MobileNetV2 curves in Fig. 4 and Fig. 5 and
contrasts with the slower and noisier training from scratch in Fig. 8 and Fig. 10 Raghu et al., 2019;
Russakovsky et al., 2015.

Data Augmentation Impact: Growing the data from 5,000 to about 80,000 effective samples is key
to the final 94.42% accuracy. The small gap of about 1.45% between train and validation accuracy
suggests that augmentation limits overfitting even with a much smaller original set Perez and
Wang, 2017; Shorten and Khoshgoftaar, 2019; Zoph et al., 2019.

Training vs Validation Accuracy (CNN from Scratch)
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Fig. 8. CNN trained from scratch. Training and validation accuracy across ten epochs. The
pattern is slower and less stable than MobileNetV2.
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Training vs Validation Loss (CNN from Scratch)
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Fig. 9. CNN trained from scratch. Training and validation loss across ten epochs.
Fluctuations are larger than for MobileNetV2, which shows less stable optimization.

Architectural Efficiency: MobileNetV2 with about 3.5 million parameters gives competitive
accuracy with much lower compute than older models. This matters for clinics because it runs on
standard workstations and on edge devices without special hardware. The timing results in Fig.
6 and Fig. 7 show this benefit He et al., 2016; Sandler et al., 2018; Simonyan and Zisserman, 2015.
Clinical Implications: The 94.42% accuracy is suitable for clinical support. With an inference time
near real time, often below one second per image, the system can help triage and speed up review.
The low compute cost supports adoption and integration with lab information systems and
existing workflows HL7 International, 2018; U.S. Food and Drug Administration, 2021.
Convergence and Generalization: The small gap between training and validation accuracy and
the steady drop in validation loss point to good generalization rather than memorization. The
early edge of validation accuracy over training accuracy suggests that dropout and frozen base
layers provide useful regularization, as seen in Fig. 4 Raghu et al., 2019; Srivastava et al., 2014.

Clinical Applications and Implications

The clinical value of this lightweight CNN based system is its easy fit into routine hematology
work while raising accuracy and speed Esteva et al, 2017; Subramanian et al., 2022. By
automating blood cell classification the system lowers reliance on manual microscopy, which
reduces inter observer variability and delays Matek et al., 2019. The compact design runs on
standard lab computers and on portable devices, which suits resource constrained settings
Sandler et al., 2018; Tan and Le, 2019. With fast inference and steady accuracy it supports real
time decisions so clinicians can begin treatment sooner Micikevicius et al., 2018. This section
explains how the system complements current practice, improves the quality and speed of
analysis, and supports wider use of Al driven tools in oncology International Medical Device
Regulators Forum, 2013, 2014; U.S. Food and Drug Administration, 2021.
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Diagnostic Workflow Integration

The system fits into a typical lab workflow with clear touchpoints HL7 International, 2018;
Sandler et al., 2018; Tan and Le, 2019:

e Image capture at the microscope using existing procedures.
e Automated preprocessing and normalization by the system.
¢ Real time classification by the CNN model.

¢ Results with confidence scores sent for human review and report sign off.
Rapid Diagnostic Capability

Automated analysis cuts review time from hours to seconds Matek et al., 2019; Micikevicius et
al., 2018; Subramanian et al., 2022. In practice this means:

o Faster triage and treatment for critical patients.
e Higher screening throughput for population level programs.
e Practical support for facilities with limited staff and compute.

Quality Standardization

Automation supports consistent and reproducible results Esteva et al.,, 2017; International
Medical Device Regulators Forum, 2014:

e Shared criteria across sites and shifts.
e Fewer errors related to fatigue or limited experience.
e Better data quality for audits and epidemiology.

Clinical Decision Support

The tool augments expert judgment rather than replacing it International Medical Device
Regulators Forum, 2013; Raghu et al., 2019; U.S. Food and Drug Administration, 2021:

e Provides second reader analysis to support diagnostic confidence.
o Flags uncertain or out of distribution cases for specialist review.
e Reports confidence scores to guide follow up testing and workflow priority.

Confusion Matrix
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Fig. 10. Confusion matrix of the proposed model on the test set, showing the number of true
and predicted samples for each white blood cell class. Most samples lie on the diagonal, which
indicates strong performance across all five classes.
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Limitations

Although the lightweight CNN based framework shows high accuracy and good generalization
for automated blood cancer classification, several limits remain. The study uses a single public
dataset collected under consistent lab conditions, which may not reflect the full range of
morphology seen in practice Singh, 2024. External validation across different sites, devices, or
staining workflows has not yet been performed, and the system has not been tested under
regulatory, interoperability, or real world workflow requirements HL7 International, 2018;
International Medical Device Regulators Forum, 2014; Subramanian et al., 2022; U.S. Food and
Drug Administration, 2021.

Dataset Limitations

This work relies on one Kaggle dataset with fixed settings for microscope hardware, illumination,
and slide preparation, with staining that is mainly Wright Giemsa Singh, 2024. Such uniform
conditions may limit robustness to domain shift and to rare morphologies. Uncommon leukemia
subtypes are under represented, which can reduce generalization to those cases Matek et al., 2019;
Shorten and Khoshgoftaar, 2019.

Generalization and Robustness Constraints

Validation is limited to a single dataset. It is not yet clear how the model behaves with other
microscope manufacturers, camera sensors, magnifications, or staining protocols, and
performance on difficult edge cases is not fully known Raghu et al., 2019; Subramanian et al.,
2022. Only a single training run is reported. Because training was done on a CPU only system,
repeated runs or “k-fold-cross-validation” were not carried out. Measures such as standard
deviation across runs would give a better view of model robustness. Future work should run
multiple experiments or use “k-fold-cross-validation” on a GPU system so that more reliable
statistical validation of the results is available.

To reduce this bias, a small external test using the Africa Blood Cell Images and EHR for Cancer
Detection dataset from a different clinical setting is included. This test uses the same metrics as
the main evaluation and gives a first view of model behaviour under a shifted data distribution.
However, the external set is still limited in size and source. A larger cross institutional study with
multiple centres and imaging setups is needed to support stronger clinical claims.

Clinical Integration Challenges

Real deployment needs more than strong accuracy. It also needs regulatory clearance such as
FDA or CE marking, integration with laboratory information systems, clinician trust, and clear
roles for responsibility and quality assurance. Prospective clinical studies and ongoing quality
processes are still required HL7 International, 2018; International Medical Device Regulators
Forum, 2013, 2014; U.S. Food and Drug Administration, 2021.

Explainability and Interpretability

Deep models can be hard to interpret. Limited transparency can slow adoption when clinicians
need to explain single predictions or understand failure modes Abir et al., 2023; Subramanian et
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al., 2022. Additional work on explainable Al methods, user interfaces, and visual explanations
would help build trust and support clinical use.

Rare Class Performance

Some subtypes and atypical patterns appear infrequently. These rare classes may be learned less
well, which can lower performance on unusual presentations Kasim et al., 2025; Matek et al., 2019;
Shorten and Khoshgoftaar, 2019. Larger and more diverse datasets, targeted augmentation, or
class specific sampling strategies may be needed to improve results for rare patterns.

Lack of Expert Annotator Details

One limitation of this study is the lack of clear information about how the labels in the Kaggle
dataset were created. The dataset description does not state whether domain experts such as
hematologists or pathologists labeled the data or checked the labels. This missing information
may introduce labeling bias or misclassification and affects how model performance should be
interpreted. Future studies should use datasets with well documented expert annotations or add
an independent step to check and validate the labels, so that the ground truth is more reliable and
the reported metrics are easier to trust.

Conclusion and Future Work

This study shows that lightweight convolutional neural networks can deliver accurate and
efficient automated blood cancer classification. The best MobileNetV2 configuration reached
94.42% validation accuracy with a small gap of about 1.45% between training and validation. On
the five class validation set it achieved overall precision of 95.8%, recall of 95.6% and F1 score of
95.6%, with per class F1 scores in a narrow band from about 92% to 98%. The model converged
in 10 epochs in about 343 minutes and gives fast inference with about 3.5 million parameters.
These results suggest that compact CNNs are a practical choice for clinical decision support
where speed and resource use matter.

Future work will push the system toward clinical translation:

e Expand data diversity with multi institutional cohorts, more leukemia subtypes, and a
wider range of staining and imaging protocols.

e Test robustness under distribution shift, changes in device and magnification, and in the
presence of adversarial or noisy inputs.

e Add explainable Al tools such as class activation maps, saliency maps, and LIME, and
report calibrated confidence for each prediction.

e Improve rare class performance using few shot learning, class balanced sampling,
appropriate data synthesis, and out of distribution detection with continual learning on
new cases.

e Address deployment needs through prospective clinical studies, clear regulatory
pathways, interoperability with laboratory information systems, quality assurance
routines, user training, and transparent documentation of limits and intended use.

Perform repeated experiments and “k-fold-cross-validation” to measure variation such as
standard deviation across runs and to provide stronger statistical evidence for robustness.
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