

Research Paper

A trophic status of freshwater phytoplankton diversity in wetlands of the Bahawalpur District, Pakistan.

Asma Zafar¹, Khansa Iqbal¹ and Shahzeb Mughal^{*1}

¹ Karachi City Lab & Diagnostic Centre, Karachi-75300, Pakistan.

Correspondence: shahzeb.zoologist04@gmail.com

Abstract:

The study describes the diversity of phytoplankton communities that inhabit River Sutlej, Bahawalpur District, Pakistan. A total of 14 species identified, comprised classes Cyanophyceae, Chlorophyceae, Zygnematophyceae and Bacillariophyceae. The most common taxa were *Caloneis amphisbaena* (18%), then *Rhizoclonium* sp. (14%), and *Amphipleura pellucida* (12%), while *Gyrosigma* sp., *Pinnularia* sp. and *Entomoneis* sp. were found in less abundance. The presence of pollution-tolerant and sensitive species shows a moderately eutrophic state of freshwater environment. The dominance of *Caloneis* and *Rhizoclonium* shows nutrient enrichment possibly linked to mild salinity and agricultural runoff, whereas *Sirogonium* and *Euastrum* indicate microhabitats of moderately good water quality. While in comparison with studies from other areas of Pakistan, reveal a community structure shaped by semi-arid hydrology, fluctuating salinity, and nutrient dynamics. Overall, the phytoplankton community demonstrates the adaptive balance of freshwater organisms under environmental stress. These findings provide valuable baseline information for future ecological monitoring, biodiversity conservation and water quality management in the lower basin of Sutlej and other arid-zone river systems of Pakistan.

Keywords: *Phytoplankton diversity, River Sutlej, Bahawalpur, Bacillariophyceae, Chlorophyceae*

Citation: Zafar S., Iqbal k., Mughal S. (2025). A trophic status of freshwater phytoplankton diversity in wetlands of the Bahawalpur District, Pakistan. J Life Sci Inform, 1(1), 1-10.

Copyright: © The Authors

Licensing: This article is open access and is distributed under the terms of Creative Commons Attribution 4.0 International License.

Conflict of Interest: Author(s) declared no conflict of interest

Introduction:

Phytoplankton are photosynthetic microscopic organisms that serve as the base of aquatic ecosystems. They are responsible for nearly 50% of the global primary productivity and play an essential role in regulating nutrient and carbon cycling, and supporting aquatic food webs (Richardson, 1997; Reynolds, 2006). These organisms form a foundation of the trophic pyramid, sustaining zooplankton, fish, and other aquatic life, thus representing as the “green lungs” of the freshwater ecosystems. They often used as bioindicators of water quality due to their rapid response to environmental change (Harnström et al., 2009; Araujo et al., 2022).

Globally, the composition and diversity of phytoplankton are known to fluctuate in influence of various physicochemical factors such as light intensity, temperature, nutrient concentration, dissolved oxygen and pH (Chen & Durbin, 1994; Reynolds, 2006). The anthropogenic stressors that cause a change in productivity, including agricultural pollution, fertilizer runoff, and uncontrolled water use, and in some cases, harmful algal blooms (Paerl & Otten, 2013). These changes need to be understood not only to conduct ecological assessment but also in the management of freshwater resources in the area where that is relied on by the people to supply their domestic and agricultural needs.

In Pakistan, research on the ecology of freshwater phytoplankton has been growing over the last years but remains concentrated in the northern river systems and dams including the Indus Basin, Rawal Lake and Keenjhar Lake (Zafar et al., 2021; Panhwar & Mairaj, 2022; Irfan et al., 2023). These tests have recorded diversity make up, seasonal changes and pollution impact on phytoplankton community. Nevertheless, there is a significant gap in the literature concerning the structure and functioning of the plankton communities in the semi-arid freshwater ecosystems of the southern Punjab which is largely in the Bahawalpur District.

Bahawalpur is a city found in the southeastern region of Punjab and is typified by its dry to semi-arid climate, high temperatures, low level of rainfall, and mass production of irrigated crops. The native biodiversity has its habitats in water bodies in this region like in ponds, canals, and wetlands, which are also used to irrigate, support livestock, and household activities. These freshwater resources despite being under an ever-rising pressure due to farming intensification, use of fertilizers, seasonal water shortage and intrusion of saline. The effect of such conditions of the environment on water chemistry and nutrient availability may, in turn, affect the productivity and diversity of phytoplankton. In spite of these complications, scientific data on phytoplankton diversity and abundance in Bahawalpur district is very scanty.

Such lack of local ecological information is a grave limitation to the sustainable management of water resources. Without the background data on the dynamics of phytoplankton, one cannot estimate the ecology of freshwater systems and predict the extent to which the further change of the environment, e.g., climate warming or altered irrigation regimes will affect them. Moreover, since phytoplankton is the foundation of aquatic food webs, the composition and density of

phytoplankton have a direct effect on the upper trophic levels, including the fisheries productivity and other waterfowl populations that utilize those habitats.

Some related literature available in other regions of Punjab dwell on the effect of nutrient enrichment and seasonal variation on diversity, distribution and abundance of phytoplankton (Fatima et al., 2022; Irfan et al., 2023). However, the environmental condition in Bahawalpur are different and unique due to high evaporation rates, saline soils, and fluctuating canal inflows that supports a specific phytoplankton community structure as compared to northern regions. These ecological differences remain unreported in the scientific literature.

The present study aims to provide a baseline data and investigate the diversity and trophic status of freshwater phytoplankton in the Bahawalpur District, Punjab, Pakistan.

Material and Methods

Sampling was conducted from four stations of two waterlogged wetland sites close to River Sutlej (29°26'30.4"N 71°38'43.6"E), District Bahawalpur Pakistan (Figure 1). Water samples were collected from water surface, preserved in 4% formalin.

In the laboratory, the preserved water samples were microscopically observed for identification and morphological analysis of plankton. The primary identification of plankton was executed by the manual catalogue by Needham & Needham (1927) and AlgaeBase (Guiry & Guiry, 2025).

Results

A total of 14 phytoplankton species were identified belonged to classes Cyanophyceae, Chlorophyceae, Zygnematophyceae and Bacillariophyceae.

1. *Oscillatoria* sp. (Figure 2A)

Class: Cyanophyceae

Family: Oscillatoriaceae

Description: Filamentous, unbranched cyanobacterium with cylindrical trichomes showing gliding motility. Cells are uniform in size with no heterocysts or akinetes. The apical cell is rounded or conical.

2. *Rhizoclonium* sp. (Figure 2B)

Class: Chlorophyceae

Family: Cladophoraceae

Description: Filamentous green alga with long, unbranched threads and cylindrical cells. Cell walls are thick, with distinct cross-septa and conspicuous chloroplasts.

3. *Chaetomorpha minima* (Figure 2C)

Class: Chlorophyceae

Family: Cladophoraceae

Description: Filamentous and unbranched with firm, spirally arranged cells; each cell has a single parietal chloroplast.

4. *Neochloris* sp. (Figure 2D)

Class: Chlorophyceae

Family: Neochloridaceae

Description: Unicellular, spherical or ovoid with a distinct chloroplast and no flagella.

5. *Euastrum* sp. (Figure 2E)

Class: Zygnematophyceae

Family: Desmidiaceae

Description: Unicellular, deeply constricted at the isthmus, forming two symmetrical semicells with smooth or ornamented walls.

6. *Sirogonium* sp. (Figure 2F)

Class: Zygnematophyceae

Family: Zygnemataceae

Description: Filamentous and unbranched; cells contain spiral chloroplasts without pyrenoids.

7. *Gyrosigma* sp. (Figure 3A)

Class: Bacillariophyceae

Family: Naviculaceae

Description: Elongated sigmoid frustules with distinct transverse and longitudinal striae visible under high magnification.

8. *Caloneis amphisbaena* (Figure 3B)

Family: Naviculaceae

Description: Linear-lanceolate valves with slightly constricted central areas; raphe straight with expanded central pores.

9. *Rhopalodia* sp. (Figure 3C)

Family: Rhopalodiaceae

Morphology: Elliptic valves with a central canal and internal symbiotic cyanobacteria (endosymbionts).

10. *Rhopalodia gibba* (Figure 3D)

Family: Rhopalodiaceae

Description: Lanceolate valves with curved ends; central canal houses symbiotic cyanobacteria.

11. *Cymbella* sp. (Figure 3E)

Family: Cymbellaceae

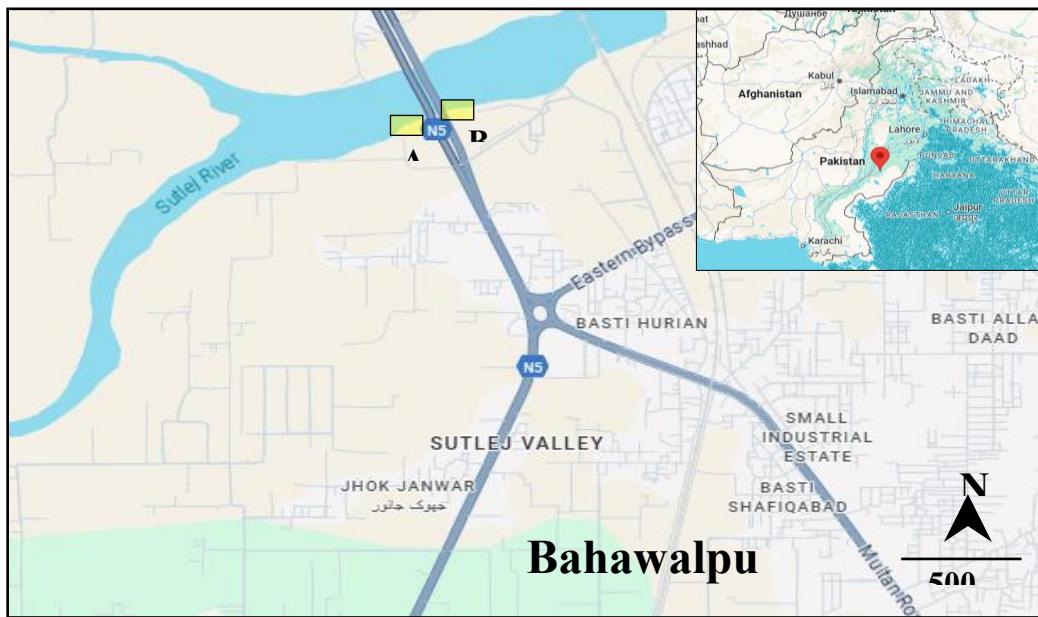
Description: Asymmetric valves with dorsal convexity and ventral concavity; raphe lies on ventral side.

12. *Pinnularia* sp. (Figure 3F)

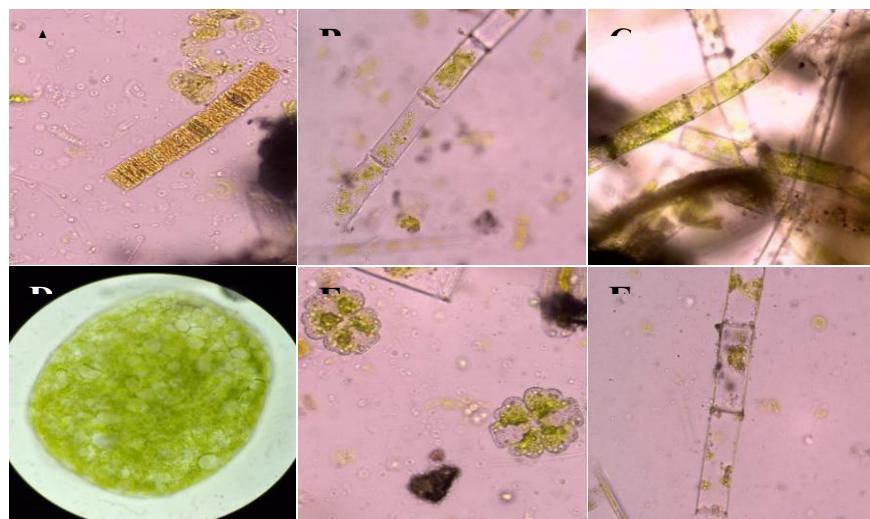
Family: Pinnulariaceae

Description: Linear-lanceolate valves with pronounced striae; central area broad and rectangular.

13. *Amphipleura pellucida* (Figure 3G)


Family: Amphipleuraceae

Description: Extremely elongated frustules with fine striation; high optical resolution species.


14. *Entomoneis* sp. (Figure 3H)

Family: Entomoneidaceae

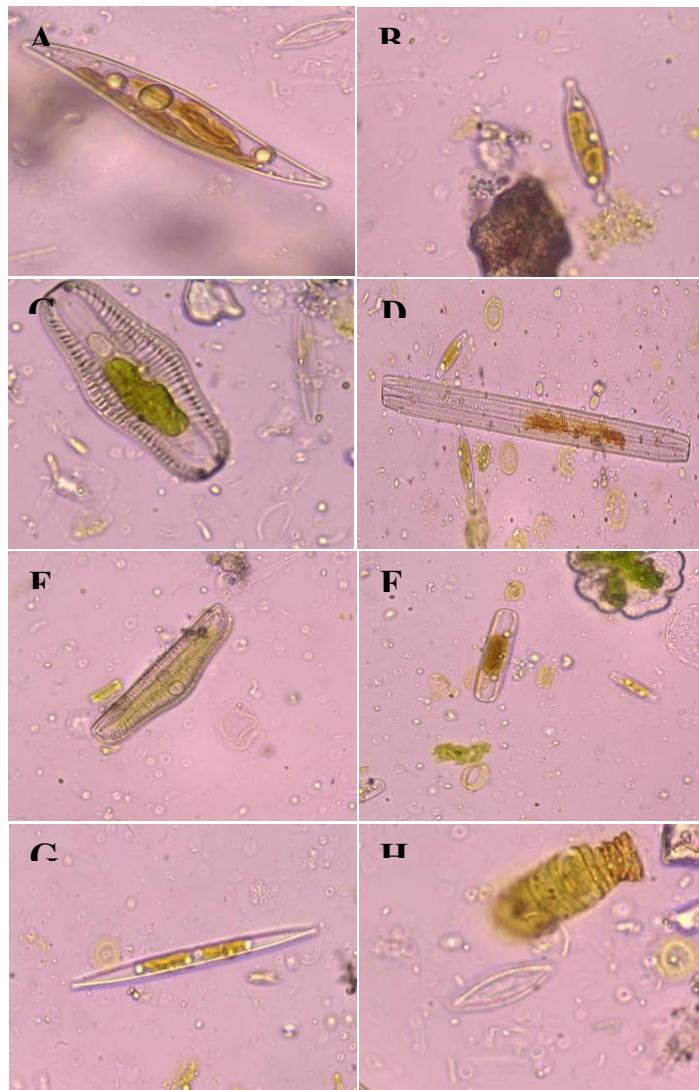

Description: Elongated, sigmoid valves with central constriction; raphe curves around the central nodule.

Fig. 1. Map showing study sites A and B at the River Sutlej (29°26'30.4"N 71°38'43.6"E), District Bahawalpur, Pakistan.

Fig. 2. Phytoplankton species. A. *Oscillatoria* sp. B. *Rhizoclonium* sp. C. *Chaetomorpha minima* D. *Neochloris* sp. E. *Euastrum* sp. and F. *Sirogonium* sp.

Fig. 3. Bacillariophyceae species. A. *Gyrosigma* sp. B. *Caloneis amphisbaena* C. *Rhopalodia* sp. D. *R. gibba* E. *Cymbella* sp. F. *Pinnularia* sp. G. *Amphipleura pellucida* and H. *Entomoneis* sp.

Table I. Phytoplankton community reported from waterlogged bodies at River Sutlej, Bahawalpur, Pakistan.

Group	Species	Abundance (%)	Location	Reference
Cyanophyceae	<i>Oscillatoria</i> sp.	2	Malakand, Karak, Pakistan	Hussain <i>et al.</i> , 2016; Hanif <i>et al.</i> , 2024
Chlorophyceae	<i>Rhizoclonium</i> sp.	14	Lahore (GC university), River Naguman, Khyber Pakhtunkhwa	Ahmad <i>et al.</i> , 2013; Wali <i>et al.</i> , 2017
	<i>Chaetomorpha minima</i>	12	Karachi coast, Pakistan	Qari <i>et al.</i> , 2014

Zygnematophyceae	<i>Neochloris</i> sp.	9	-	-	-
	<i>Euastrum</i> sp.	6	Western Desert	of	Saber <i>et al.</i> , 2018
Bacillariophyceae	<i>Sirogonium</i> sp.	5	Egypt		Yasar <i>et al.</i> , 2016
	<i>Gyrosigma</i> sp.	0.5	Lahore, Pakistan		Naz <i>et al.</i> , 2012; Shoaib <i>et al.</i> , 2017
	<i>Caloneis amphisbaena</i>	18	Karachi, Pakistan		Al-Ghabban & Al-Asady, 2022
	<i>Rhopalodia</i> sp.	7	Shafya River, Iraq		Aliya <i>et al.</i> , 2009; Barinova <i>et al.</i> , 2016
	<i>Rhopalodia gibba</i>	10	Karachi and Kabul River, Pakistan		You <i>et al.</i> , 2009
	<i>Cymbella</i> sp.	4	Xinjiang Uygur, China		Badshah, <i>et al.</i> , 2024
	<i>Pinnularia</i> sp.	0.5	Khyber Pakhtunkhwa, Pakistan		Naz <i>et al.</i> , 2012
	<i>Amphipleura pellucida</i>	12	Karachi coast, Pakistan		Kuz'menko & Ignatyev, 2008
	<i>Entomoneis</i> sp.	1	Argentine Islands, Antarctic Regions		Al-Handal <i>et al.</i> , 2020
			West Coast of Sweden		

Discussion:

The phytoplankton community recorded from the River Sutlej at Bahawalpur revealed a diverse mix of Cyanophyceae, Chlorophyceae, Zygnematophyceae, and Bacillariophyceae, reflecting an ecosystem under moderate nutrient enrichment but still maintaining zones of good water quality. The presence of *Oscillatoria* sp. indicates nutrient-rich and slightly polluted conditions, consistent with findings from freshwater bodies in Malakand and Khyber Pakhtunkhwa (Hussain *et al.*, 2016; Hanif *et al.*, 2024). Globally, similar trends have been noted in China's Lake Taihu (Wu *et al.*, 2019) and the Nile Delta (El-Sheekh *et al.*, 2020), where *Oscillatoria* thrives in eutrophic waters. Its restricted quantities here indicate moderate and not severe eutrophication.

Among the chlorophyceae, *Chaetomorpha minima* and *Rhizoclonium* sp. were dominated. *Rhizoclonium* grows in slightly alkaline and nutrient-enriched habitat (Ahmad *et al.*, 2013; Wali *et al.*, 2017), which similar to conditions found in riverine waters of India (Nath *et al.*, 2019). *Chaetomorpha minima*, a salinity-tolerant alga, indicates marginal salinity and conductivity, perhaps from return irrigation flows, consistent with Indus delta along Karachi coastline (Qari *et al.*, 2014). Meanwhile, *Sirogonium* sp. and *Euastrum* sp., known for preferring clean waters (Saber *et al.*, 2018; Yasar *et al.*, 2016), indicate that parts of the Sutlej still retain good-quality freshwater pockets.

Diatoms were also well represented. *Rhopalodia* sp., *Cymbella* sp., and *Pinnularia* sp. suggest stable and oxygenated habitats, in line with studies from the Kabul River and northern Pakistan (Aliya *et al.*, 2009; Barinova *et al.*, 2016). The occurrence of *Rhopalodia gibba*, which hosts nitrogen-fixing endosymbionts, reflects adaptation to fluctuating nutrient levels—a trait also noted in Chinese rivers (You *et al.*, 2009). Similarly, *Gyrosigma* sp. and *Caloneis amphisbaena* were associated with moderate organic content, comparable to reports from the Costa Rican and European freshwater systems (Bursey, 1989; Kelly *et al.*, 2018).

Overall, the coexistence of pollution-tolerant (*Oscillatoria*, *Rhizoclonium*) and sensitive (*Euastrum*, *Cymbella*) species highlights a transitional ecological state, neither pristine nor heavily degraded. This equilibrium indicates that the River Sutlej in Bahawalpur has moderately stressed but stable aquatic environments, which are determined by seasonal flow, agricultural impacts, and semi-arid hydrology. This biodiversity and ecological integrity will need continued monitoring in order to maintain its biodiversity.

Conclusion

The present study gives a baseline information about the phytoplankton community in River Sutlej near Bahawalpur and shows that the community consists of a rich combination of cyanobacteria, green algae, desmids, and diatoms. The presence of both tolerant species (*Oscillatoria*, *Rhizoclonium*) and sensitive taxa (*Euastrum*, *Cymbella*) indicates a moderately stressful ecologically active freshwater system. The results provide a valuable point of reference in terms of ecological health monitoring and act as a guide in the future in limnological and conservation studies in semi-arid environments.

References:

Ahmad, K., Aslam, M., & Khan, M. N. (2013). Study on the algal diversity of Lahore and its surrounding water bodies. *Journal of Animal and Plant Sciences*, 23(2), 556-562.

Aliya, R., Sabira, S., & Rehman, H. (2009). Diatom flora of the Kabul River, Pakistan. *Pakistan Journal of Botany*, 41(1), 235-243.

Al-Ghabban, M. J. S., & Al-Asady, R. K. A (2022). Impact of some physico-chemical factors distribution on the density of phytoplankton in the Shafya River/Iraq. *International journal of health sciences*, 6(S8), 4864-4876. <https://doi.org/10.53730/ijhs.v6nS8.13314>

Al-Handal, A. Y., Mucko, M., & Wulff, A. (2020). *Entomoneis annagodhei* sp. nov., a new marine diatom (Entomoneidaceae, Bacillariophyta) from the west coast of Sweden. *Diatom Research*, 35(3), 269-279. <https://doi.org/10.1080/0269249X.2020.1787229>

Araujo, G. S., Pacheco, D., Cotas, J., da Silva, J. W. A., Saboya, J., Moreira, R. T., & Pereira, L. (2022). Plankton: Environmental and economic importance for a sustainable future. In *Plankton Communities*. IntechOpen. <https://doi.org/10.5772/intechopen.100433>

Badshah, S. L., Stirbet, A., Siddiquee, M., Govindjee, G., Kang, D. W., Bridgeman, T., & Seo, Y. (2024). Inhibition of CO₂ fixation as a potential target for the control of freshwater cyanobacterial harmful algal blooms. *ACS ES&T Water*, 4(8), 3309-3319. <https://doi.org/10.1021/acsestwater.4c00191>

Barinova, S., Khuram, I., Asadullah, A. N., Jan, S., & Shin, D. H. (2016). How water quality in the Kabul River, Pakistan, can be determined with algal bio-indication. *Advanced Studies in Biology*, 8(4), 151-171. <http://dx.doi.org/10.12988/asb.2016.6830>

Bursey, C. R. (1989). *Wetland Invertebrates*. Wetlands Ecology and Conservation: Emphasis on Pennsylvania. The Pennsylvania Academy of Science, Typehouse of Easton, Phillipsburg, NJ, USA, 147-157.

Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. *Marine Ecology Progress Series*, 109, 83-94.

Fatima, A., Abbas, G., & Rashid, S. (2022). A preliminary investigation of phytoplankton and zooplankton diversity in marine water ponds, Thatta, Sindh, Pakistan. *Sarhad Journal of Agriculture*, 38(3), 1076-1084. <https://dx.doi.org/10.17582/journal.sja/2022/38.3.1076.1084>

Guiry, M. D., & Guiry, G. M. (2025). AlgaeBase. World-wide electronic publication, University of Galway. <https://www.algaebase.org>

Hanif, A., Shah, F. H., Mumtaz, A. S., Ullah, T., Azeem, M. A., Ahmad, M., & Shah, A. (2024). Taxonomic Study of Freshwater Microalgal Diversity and Its Optimum Culturing Condition of District Karak, Pakistan. *Journal of Biodiversity and Environmental Sciences*, 24(1), 97-116.

Harnström, K., Karunasagar, I., & Godhe, A. (2009). Phytoplankton species assemblages and their relationship to hydrographic factors--A study at the old port in Mangalore, coastal Arabian Sea. *Indian Journal of Marine Sciences*, 38(2), 224.

Hussain, M., Ahmad, S., & Khan, Z. (2016). Taxonomic study of Oscillatoria species from freshwater habitats of Malakand Division, Pakistan. *FUUAST Journal of Biology*, 6(1), 97-103.

Irfan, M., Nasir, A., & Djamhur, M. (2023). Phytoplankton quality based on species composition in the Kastela waters, Ternate, North Maluku, Indonesia. *Aquaculture, Aquarium, Conservation & Legislation*, 16(2), 743-752.

Kuz'menko, L. V., & Ignatyev, S. M. (2008). Species diversity of phytoplankton in waters of the Argentine Islands (Antarctic regions). *International Journal on Algae*, 10(3).

Naz, F., Aziz Qureshi, N., & Us Saher, N. (2012). Temporal and spatial variations in the species composition, distribution, and abundance of Copepods in mangrove creek area along the Karachi coast, Pakistan. *Indian Journal of Marine Sciences*, 41(1), 61.

Needham, J. G., & Needham, P. R. (1927). A guide to the study of fresh-water biology (Vol. 10). American Viewpoint Society, Incorporated.

Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. *Microbial Ecology*, 65(4), 995-1010.

Panhwar, S. K., & Mairaj, M. (2022). An assessment of phytoplankton diversity in relation to the environmental variables in the Indus River Estuary, Sindh, Pakistan. *Pakistan Journal of Botany*, 54(4), 1417-1425.

Qari, R., Qureshi, N. A., & Siddiqui, S. A. (2014). Phytomass studies on natural bed of seaweed at Paradise point, Karachi coast. *International Journal of Economic and Environmental Geology*, 5, 11-17.

Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge University Press.

Richardson, T. L. (1997). Primary productivity and phytoplankton dynamics in freshwater systems. *Annual Review of Ecology and Systematics*, 28, 89-112.

Saber, A. A., Kouwets, F. A., Haworth, E. Y., & Cantonati, M. (2018). A new *Euastrum* species (Conjugatophyceae, Streptophyta) from the Western desert of Egypt. *Cryptogamie, Algologie*, 39(2), 215-226.

Shoaib, M., Naz, F., & Qasim, S. (2017). Morphological and taxonomic observations on marine diatoms from Karachi coastal areas, Pakistan. *Pakistan Journal of Botany*, 49(2), 679-686.

Wali, M., Khan, H., & Ullah, R. (2017). Algal biodiversity of River Naguman, Khyber Pakhtunkhwa, Pakistan. *International Journal of Biosciences*, 10(5), 73-81.

Yasar, M., Akhtar, N., & Farooq, U. (2016). Taxonomic assessment of filamentous green algae from Lahore, Pakistan. *Journal of Applied Environmental and Biological Sciences*, 6(3), 57-64.

You, Q., Li, J., & Chen, F. (2009). Diatoms of the *Rhopalodia gibba* group from Xinjiang Uygur Autonomous Region, China. *Acta Botanica Boreali-Occidentalis Sinica*, 29(5), 913-920.

Zafar, N., Javed, M., Saeed, R., & Bukhari, S. M. (2021). Phytoplankton diversity and seasonal variation in Rawal Lake, Pakistan. Polish Journal of Environmental Studies, 30(2), 1809–1820.