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Abstract

The Internet of Things(IoT) is changing different industries to improve the interactions between
devices to facilitate automation, monitoring, and analysis. However, routing within IoT networks is
not easily solved due to factors such as the dynamic nature of the networks, congestion, flooding,
and resource waste. Efficient routing methods are necessary to guarantee connection availability,
longer network duration, and rational resource usage. Reinforcement learning is one of the subfields
of machine learning that can potentially address these challenges because it allows for learning in
decision-making processes. In this regard, the flooding-controlled adaptive reinforcement learning-
based route optimization model (FARLRO) is introduced to mitigate the problem of network flooding
as well as make the most of the routing decisions within the networks. The parameters such as residual
energy level, available bandwidth, mobility pattern, traffic condition and topological arrangements
are incorporated into the state space of the model, and it uses reinforcement learning to adapt the
routing decisions. The Q-learning model continuously improves the state variables and optimizes
routes to reduce the cases of flooding and enhance the network?s efficiency. It also uses the Bellman
equation for assessing future rewards, thus making it a forward-looking method of route optimization.
Extensive experiments have shown that the model provides significant improvements in several critical
performance metrics, such as a smaller flooding ratio, a lower network congestion index, less frequent
broadcast storms, a lower packet drop ratio resulting from flooding, an increased network lifetime, a
higher Mobility Aware Packet Delivery Ratio, and higher Resource Utilization Efficiency. As compared
to the conventional routing protocols, the proposed model outperforms various state-of-the-art ad
adhoc routing schemes. Extensive experiments have been performed to show that the proposed model
decreases the flooding ratio, less overhead. Both above parameters are critical to ensure a longer
network lifetime compared with the other approaches in high-density and high-mobility environments.
Another advantage of the model is its effective stability in solving route optimization problems in IoT
networks, which provides a great improvement over traditional routing algorithms.

Keywords: Internet of Things, Io, reinforcement learning, , Machine learning,route optimization

INTRODUCTION

unpredictable nature of IoT environments.

Issues

The Internet of Things (IoT) refers to a network of
interconnected devices, such as smartphones, appli-
ances, and sensors, that can communicate with each
other and exchange data over the Internet [1]. In
traditional IoT networks, several aspects are either
human-driven or based on a dynamic template; how-
ever, future intelligent networks require Artificial In-
telligencem(AI) or machine learning(ML) techniques
that can analyze the given environment and make au-
tomated decisions. This not only eliminates human
dependence but makes the IOT network agile and re-
liable, from the realm of smart homes and cities to in-
dustrial automation and healthcare systems, the inte-
gration of IoT technologies has revolutionized various
facets of human life [9]. However, with the exponential
growth in the number of IoT devices, the optimization
of data transmission routes has emerged as a critical
challenge confronting IoT networks [10].

Efficient routing of data packets within an IoT net-
work is paramount for ensuring optimal throughput
and resource utilization. Conventional routing pro-
tocols [11] , while effective in traditional networks,
they often fall short in addressing the dynamic and

such as network congestion, data collisions, and ineffi-
cient bandwidth utilization pose significant hurdles to
achieving seamless communication within IoT ecosys-
tems [12].

Moreover, flooding-based routing approaches [13],
wherein packets are comprehensively broadcast to
neighbouring nodes, aggravating network overhead
and leading to wasteful utilization of scarce resources.
Thus, there is a pressing need for novel routing strate-
gies that can adapt to the unique challenges posed by
IoT networks, thereby enhancing their efficiency and
scalability.

A typical TIoT network architecture [14] comprises
three fundamental components: devices and sensors,
connectivity infrastructure, and cloud or edge com-
puting resources. IoT devices, equipped with sensors
and actuators, serve as the backbone for collecting
data from the physical world. Various connectivity
options, including Wi-Fi, cellular networks, and Low-
Power Wide-Area Networks (LPWAN) [15], facilitate
the transmission of data to cloud-based servers or edge
computing devices for processing.

IoT network architectural framework supports nu-
merous applications, spanning smart homes, smart
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cities, industrial automation, healthcare, and environ-
mental monitoring [16]. However, it also presents a
host of challenges, including security vulnerabilities,
scalability requirements, and efficient data manage-
ment practices [17]. Addressing these challenges ne-
cessitates the development of innovative solutions that
leverage emerging technologies, such as reinforcement
learning, to unlock the full potential of IoT networks.
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Figure 1: Centralized architecture along with its
implications within a LTE network context
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1.1 Flooding in network

In flooding [18], when a node wants to transmit a
packet to a destination, it broadcasts the packet to all
its neighbouring nodes. Each receiving node, in turn,
rebroadcasts the packet to its neighbors, and this pro-
cess continues until the packet reaches the destination
or its Time to Live (TTL) value expires. Flooding
ensures that the packet reaches its destination regard-
less of the network topology or the presence of faulty
nodes. This makes it particularly suitable for scenarios
where the network is highly dynamic and the topology
changes frequently.

1.2 Issues and challenges while han-
dling Flooding

This section discusses the various challenges and con-
trol mechanisms associated with network flooding, a
common issue in networking where packets are broad-
cast to all neighbouring nodes. Key issues such as net-
work overhead, packet collision, and redundant trans-
missions are explored, each contributing to network in-
efficiencies like increased congestion, wasted resources,
and delays. To address these problems, the section also
examines conventional flooding control mechanisms,
including techniques like Time-To-Live (TTL) limits,
duplicate packet detection, neighbour table manage-
ment, and adaptive flooding algorithms. These meth-
ods aim to optimize network performance by reduc-
ing unnecessary traffic and improving the efficiency of
packet delivery.
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In highly dense networks or nodes per area, there
is a high probability for collisions to occur due to the
simultaneous transmission of packets from the nodes
[19]. Such collisions cause packet drop and subse-
quent re transmission, which makes the problem worse,
adding to the congestion of the network. As flooding
does not depend on any routing information, many
nodes may get a copy of the same packet from differ-
ent neighbour nodes. Such redundancy is not only a
waste in terms of available networks but also results in
delay and inevitably higher latency and delay in the
delivery of packets.

1.3 Conventional
Mechanisms

Flooding Control

To deal with the effects of flooding, several conven-
tional control measures have been recommended as
follows.

One of the most primitive techniques of controlling
flooding is the utilization of a TTL value attached to
each packet. The TTL values determine how many
jumps or relay nodes the packet is allowed to make
before it is discarded. Due to TTL, infinite looping
and the unnecessary circulation of packets within the
network are controlled to reduce network overhead.

Nodes can employ techniques such as sequence
numbers or message identifiers that can be used at
nodes to knock out those copy instances of the same
packet which have already been received to avoid the
burden of replay attacks. When applied, duplicate
packet detection aids in saving the network cost and
reducing congestion as it does not allow the retrans-
mission of packets that have been delivered to the
nodes.

There exists the possibility where a node receives
multiple copies of the same packet in the network and
to deal with this issue; nodes can make use of sequence
numbers or message identifiers. By reducing the oc-
currence of repeated transmissions, duplicate packet
detection assists in the preservation of traffic and the
reduction of congestion.

Adaptive Predictive flooding algorithms act in a
way and flood according to the expectations of the
various requirements and conditions of the network.
These algorithms may have some heuristics like prob-
abilistic rebroadcasting or geographical forwarding for
efficient delivery of packets, except flooding.

1.4 What is Reinforcement Learning

Reinforcement Learning (RL) is a powerful paradigm
in the field of artificial intelligence and machine learn-
ing, wherein an agent learns to make sequential de-
cisions through interaction with an environment to
maximize cumulative rewards [20]. RL is mainly com-
prised of three components. An agent is an entity
that is responsible for making decisions and taking ac-
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tions within the environment. The external system
with which the agent interacts comprises states, ac-
tions, and rewards.

In reinforcement learning, it is a plan or chart that
an agent uses to determine its actions in view of the
observed states with the aim of maximizing future ben-
efits. Thus, the agent figures out the best policies dur-
ing the different phases of the trial-and-error mecha-
nism of the available actions in the environment. RL
algorithms use different approaches such as value iter-
ation, policy iteration and deep learning to estimate
the control policies and solve difficult decision-making
problems in different fields.

1.5 Role of Reinforcement Learning in
flooding control in IoT networks

Reinforcement Learning offers a promising approach
to addressing the challenges associated with conven-
tional flooding control techniques in IoT networks. By
leveraging the adaptive and learning capabilities of
RL agents, IoT networks can dynamically adjust their
flooding strategies based on network conditions and
performance metrics, thereby optimizing resource uti-
lization and improving communication efficiency [21].
Let’s delve into how RL can overcome the limitations
of conventional flooding control mechanisms.

1.5.1 Dynamic Adaptation

While static control mechanisms cannot work with a
dynamic behavior in the RL agents that can dynami-
cally change their flooding strategies based on the ob-
served states and the feedback received from the en-
vironment, even during flooding. This dynamic na-
ture allows IoT networks to change accordingly to the
topology, traffic and channel, which in turn enhances
the reliability and scalability of the IoT networks.

1.5.2 Optimized Resource Allocation

RL algorithms are capable of learning how best to al-
locate the scarce network resources through a trade-
off between exploration and exploitation. By learning
how to decide which nodes to send packets to, the
RL agents will limit the number of forwarded packets,
and consequently cut on the number of collisions, as
well as limit energy consumption, leading to improved
throughput and reliability.

1.5.3 Learning from Experience

RL agents learn from experience by interacting with
the environment and receiving feedback in the form
of rewards or penalties. Through iterative exploration
and exploitation, RL algorithms can discover optimal
flooding strategies that maximize long-term rewards,
such as packet delivery ratio, end-to-end delay, and
energy efficiency.

1.5.4 Adaptive Policy Optimization

RL agents acquire knowledge through experience
gained by interaction with the environment and the
feedback by means of rewards or punishment. As a
result of exploration and exploitation in RL, RL algo-
rithms can find the best flooding strategies that will
enable it to get maximum rewards in the long run,
these being PDR, End-to-End delay, and energy effi-
ciency. Reinforcement learning model has a wide range
of applications and services, such as augmented real-
ity, virtual reality, the Internet of Things (IoT), and
many more [11].
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Figure 2: Working principle of reinforcement learning

1.6 The Problem

Enhancing the routes for the data transfer in IoT also
remains a problem due to the basic routing protocol
that faces the problem of scalability when confronted
with dynamic and diverse IoT environments. Chal-
lenges like congestion, collision, and resource manage-
ment become a problem in large-scale, reliable, and
real-time networks for IoT, which slows down the ex-
tent and take up of these services. Additionally, this
kind of route, the flooding-based approaches, compli-
cates the consumption of available network overhead
and resource utilization. Thus, there is a pressing need
to develop intelligent routing algorithms leveraging
Reinforcement Learning (RL) techniques to dynami-
cally optimize routing strategies and mitigate the chal-
lenges faced by conventional flooding control mecha-
nisms in IoT networks. This problem raises the several
research questions mainly:

1. How can RL intelligently optimize the routing
path procedures, such as selection, multipath
routing, load balancing and dynamic routing, in
resource-scarce IoT networks?

2. What are the specific RL techniques suitable for
route optimization, such as deep reinforcement
learning for making optimal routing decisions?

3. How is the proposed Flooding-Controlled Adap-
tive Reinforcement Learning-Based Route Opti-
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mization Model compare to traditional routing
protocols in terms of performance?

2 LITERATURE REVIEW

The first and foremost objective of the research pa-
pers is to gain a broad perspective on the recent work
done in the field of IoT network optimization. This
includes calling out specific techniques and methods
used in the optimization of IoT networks, as well as
evaluating the problems of congestion, energy utiliza-
tion, scalability and QoS. Through the identification
of concepts and the establish the relationships between
various research papers, this examination is prospec-
tive to provide a theoretical foundation for the pro-
posed Flooding Control ML-based route optimization
model, and advance the practice and accuracy of IoT
networks applied on smart city, industrial applica-
tions, healthcare, and environmental condition sens-
ing Internet of Things IoT refers to a complex web
of digital connections not only limited to computers,
smart phones, home appliances, automobiles etc. But
inclusively encompassing machines, gadgets, sensors,
industrial products and medical instruments and in
fact the list is endless and keeps growing day by day.
Such devices are designed to interact and share infor-
mation independently through the internet, trying to
deliver more intelligent solutions and additional func-
tions in several fields. Because IoT systems produce
more data than other systems, the efficient solution to
transfer these networks? data is critical to their per-
formance, especially regarding the routes connecting
them. Optimal management of routes contributes to
optimal message delivery, time saving, energy saving
and improvement of the performance of IoT networks.
This section presents a review of different methodolo-
gies and approaches suggested for the purpose of route
optimization in IoT networks; further, an analysis of
these methodologies and approaches is done, and the
strengths and weaknesses of all the approaches men-
tioned are made clear.

2.1 Flooding-Based Routing

Among all techniques that are used when routing data
packets in the network, the first and the simplest is
flooding [22]. Researchers have studied several tech-
niques to optimize the flooding for adhoc networks.
In this technique, if a node has a data packet that it
must send to a particular destination, it broadcasts the
packet to all neighbor nodes. It then passes it to the
next receiving node, and this process goes on until the
packet reaches the destination or till the TTL value is
exhausted. It also guarantees that the packet gets to
its intended destination, irrespective of the formation
of the network at the time of transmission or even if
certain nodes are down.

Innovations in Computing and Emerging Technologies

There are several benefits in the use of a flooding-
based route. Coupled with the above advantages, the
flooding-based routing method provides the following
benefits. First, it is very easy to implement since it
lacks extensive routing tables and does not require the
protocols to hold state information about the network.
Further, the method is highly resilient because no spe-
cific paths must be maintained when the topology or
the rate of communication in the network changes.
Most importantly, flooding is also certain to deliver
the relevant packet if there is a single path existing
from the source node to the destination node.

However, the method also has large drawbacks.
The most significant drawback is the amount of traffic
it creates in the networks, as many copies of the packet
are sent to different neighbouring nodes, thus creating
competition for the network resources. Additionally,
in high-density nodes, the probability of many nodes
transmitting data packets at the same instance causes
data packet collisions and loss with the subsequent
need for retransmission. Finally, since flooding does
not employ any routing information, different neigh-
bours may send similar data to one node, and as a
result, there is wastage of resources and time as other
nodes receive a similar packet several times.

2.1.1 Limitations Identified

e Slowness in traffic and unnecessary transmis-
sions.

e Greater collisions and congestion in thick net-
works.

e Unutilized energy and bandwidth Blind broad-
casting.

2.1.2 Expected Improvement (Gap)

Current techniques for floods are not smart enough in
decision-making to inhibit the rebroadcast of redun-
dant messages. In this work, we present a forwarding
mechanism, which is motivated by RL technology, that
would re-forward packets selectively in order to mini-
mize redundancy and to ensure reliability.

2.2 Hierarchical Routing

Hierarchical routing [23] organizes the network into
clusters, with each cluster having a special cluster
head. The key management roles of the cluster head
include overseeing communication within the cluster
and managing communication between different clus-
ters. This approach offers several benefits, including
reduced routing overhead and enhanced scalability by
dividing the network into more manageable parts.
The scalability of this routing method is partic-
ularly advantageous in large-scale networks. By col-
lecting data at the cluster heads, the method reduces
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the number of transmissions required, thereby min-
imizing network congestion. Additionally, hierarchi-
cal routing is energy efficient, an essential feature in
IoT environments where devices typically have limited
power supply capacity. The reduction in the number
of transmissions needed not only conserves energy but
also contributes to better load balancing, ensuring that
the network’s resources are used efficiently.

However, there are also some disadvantages to this
approach. One significant drawback is the potential
for cluster head overload. When cluster heads receive
too much traffic, they can become bottlenecks, reduc-
ing the overall efficiency of the network. Addition-
ally, the process of forming and maintaining clusters
is complex and time-consuming. Decisions, regard-
ing which nodes should be selected as cluster heads,
as well as the ongoing management of cluster mem-
bership, require careful planning and can be resource-
intensive. Furthermore, the reliance on cluster heads
introduces a single point of failure; if a cluster head
fails, it can cause major communication disruptions
within the cluster, posing a serious threat to the net-
work’s stability.

2.2.1 Limitations Identified
e Bottlenecks are caused by cluster-head overload.

e Cluster formation and maintenance a compli-
cated processes.

e Single-point failure risk

2.2.2 Expected Improvement (Gap)

Current techniques for floods are not smart enough in
decision-making to inhibit the rebroadcast of redun-
dant messages. In this work, we present a forwarding
mechanism, which is motivated by RL technology, that
would re-forward packets selectively in order to mini-
mize redundancy and to ensure reliability.

2.3 Geographic Routing

This kind of routing arranges the connections accord-
ing to clusters, and there exists a special cluster head
in each cluster [24]. Some of the responsibilities of the
cluster head are responsible for communication within
the cluster and also communication between two or
more clusters. The above approach has several advan-
tages, which include: it reduces the routing overhead
since the network is divided into smaller parts to en-
hance scalability.

It is for this reason that this routing method is
more scalable in large network certification. By col-
lecting data at the cluster heads, the method helps
to decrease the number of signals transmitted over
the network, making the congestion minimal. Fur-
thermore, hierarchical routing is energy-friendly, an-
other important characteristic required in IoT isolates,

where often device power supply capabilities are re-
stricted. Such actions save energy for the transmission
as well as contribute to load balancing of the necessary
network load, which is paramount in determining the
network resource usage. But there are also some disad-
vantages that are associated with this particular way
of thinking.

However, there is one major disadvantage, includ-
ing cluster head overload. When cluster heads are
heavily busy, they attract a lot of traffic and thus act as
a constraint to the performance of the network. How-
ever, the process of cluster formation and maintenance
is not very easy and consumes a lot of time. The cri-
teria for selecting nodes to be used as cluster heads
and the membership management of the clusters espe-
cially involve a lot of planning and may take a lot of
resources. Moreover, the use of the cluster head adds
up a problem of single point failure; if the cluster is
led by a single head and this head fails, then communi-
cation within the cluster is significantly affected, and
this is a great threat to the network.

2.3.1 Limitations Identified

e Need the proper location of the information.
e Lives in error of localization.

e Continuing to face congestion and redundancy
of packets.

2.3.2 Expected Improvement (Gap)

Such procedures fail to control routing processes ac-
cording to real-time network states. FARLRO imple-
ments RL state-feedback to make and change forward-
ing actions dynamically without making use of entirely
geographic information alone.

2.4 Hierarchical Routing

Hierarchical routing [23] organizes the network into
clusters, with each cluster having a special cluster
head. The key management roles of the cluster head
include overseeing communication within the cluster
and managing communication between different clus-
ters. This approach offers several benefits, including
reduced routing overhead and enhanced scalability by
dividing the network into more manageable parts.

The scalability of this routing method is partic-
ularly advantageous in large-scale networks. By col-
lecting data at the cluster heads, the method reduces
the number of transmissions required, thereby min-
imizing network congestion. Additionally, hierarchi-
cal routing is energy efficient, an essential feature in
ToT environments where devices typically have limited
power supply capacity. The reduction in the number
of transmissions needed not only conserves energy but
also contributes to better load balancing, ensuring that
the network’s resources are used efficiently.
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However, there are also some disadvantages to this
approach. One significant drawback is the potential
for cluster head overload. When cluster heads receive
too much traffic, they can become bottlenecks, reduc-
ing the overall efficiency of the network. Addition-
ally, the process of forming and maintaining clusters
is complex and time-consuming. Decisions, regard-
ing which nodes should be selected as cluster heads,
as well as the ongoing management of cluster mem-
bership, require careful planning and can be resource-
intensive. Furthermore, the reliance on cluster heads
introduces a single point of failure; if a cluster head
fails, it can cause major communication disruptions
within the cluster, posing a serious threat to the net-
work’s stability.

2.5 Machine Learning-Based Routing

In routing, the use of ML adapts previous knowledge
and data to predict good routes for vehicles or data
packets [27]. One method that has a good result is
supervised learning which can help predict the state
of a network and adapt routing to that state.

The use of ML [21] for routing comes with the fol-
lowing benefits: One of them is the predictive nature
of the system. The result of the analysis of histori-
cal data is used by the ML algorithms to provide a
prediction of problems that may be expected, such as
network congestion, and modify routing decisions to
avoid these problems. It further optimizes the execu-
tion and dependability of the network to improve the
management of the routing procedures. Further, it is
quite flexible; the algorithms can also be adjusted to
work using different performance measures, which in
turn means that the Basic ML Algorithms can be re-
trained to work using different routing objectives or
scenarios.

Still, there are certain disadvantages of utilizing
ML in routing as well. That is the reason one of the
biggest problems can be considered as the dependence
on the data. Another challenge is that the training
process of ML algorithms necessitates accurate quan-
tities of data, most of which are difficult to get or
could be voluminous, requiring even large storage and
computational intensities. This dependence on data
as a medium might prove disadvantageous, especially
where access to this input is restricted. Also, the traffic
of training and feeding the ML models, and particu-
larly deep learning-based models, might be quite high.
This is a big drawback, especially for IoT lower-tier de-
vices that are rarely endowed with high computational
power. The final concern is that of generalization; the
current learning algorithms train the ML models us-
ing certain network conditions, and therefore, when
applied to networks with different or even new condi-
tions, it may cause the algorithm to make suboptimal
routing decisions.

Innovations in Computing and Emerging Technologies

2.5.1 Limitations Identified

e Distributed on high dependency on labelled
datasets.

e Poor flexibility to invisible network conditions.

e Training the inappropriate overhead of the
resource-constrained IoT nodes.

2.5.2 Expected Improvement (Gap)

ML models do not possess the dynamic performance
of learning and controlling flooding in real-time. RL
is an adaptive version of ML that substitutes of static
mechanisms with continuous environmental learning.

2.6 Genetic Algorithm-Based Routing

Genetic Algorithms (GAs) are based upon the nat-
ural selection process and in search of the best so-
lution; a population of options evolves over several
steps. Specifically, in the routing context, the GAs can
be used in finding out the best path through which
data can be transmitted.Another benefit one should
mention is the fact that GAs are capable of global
optimization. They are suitable for solving problems
where the goal is to find global optima, especially in
large and complex search space, such as in large and
heterogeneous networks, where they are suitable for
finding the best routing path. Also, the GAs is very
flexible; they are able to adapt themselves to new con-
ditions in the network and develop new routing strate-
gies that are better fitted for the current situation.
The third advantage that GA is the high level of ro-
bustness. Here, GAs can get stuck in local optima and
this contributes to the productivity of the algorithm
in finding the desired routing solutions.

The main disadvantage of this technique implies
the necessity of significant computational loads. Al-
though the process of creating and comparing the mul-
tiple runs of the possible solutions is beneficial, it is
computationally costly, especially for those environ-
ments with limited computational power. Besides, the
problem-solving process of GAs may take a longer time
before arriving at the near-optimal solution. It is not
uncommon to require multiple generations in finding
an effective solution and this eats up time, which can
be resource wasting especially in real time contexts
which require speed in delivery. In addition, GAs
are known to be dependent on various factors whose
values have to be appropriately set in order to yield
good results: the population size, mutation rate, and
crossover rate. These parameters may take higher val-
ues and may also be hard to find, and they must be set
well before to maximize the efficiency of the algorithm.
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2.6.1 Limitations Identified

i Poor performance of the code. ii Slow convergence
iii Sensitive to the tuning of parameters.

2.6.2 Expected Improvement (Gap)

In the case of IoT networks, GA-based routing is
unable to respond to the fast topology changes.
FARLRO can react in real time to changes in states
by updating policy in response to changes.

2.7 Other Advanced Routing Tech-
niques

One of the meta-heuristic algorithms is Ant Colony
Optimization (ACO), which is inspired by the ant?s
foraging behavior. Described below is applied in the
discovery of the best solutions to pass through a net-
work by replicating how ants drop pheromones on the
best paths. This approach is based on the organization
of ant?s behavior since they work in networks.

The fact that ACO is distributed is one of the main
benefits of this approach. This characteristic indeed
proves ACO as appropriate for the modern IoT net-
works, where the devices are not necessarily in the
same network. Also, ACO is flexible; it can quickly
adapt to changes in the network architecture, for in-
stance, inclusion or exclusion of nodes. This adapt-
ability enables the algorithm to perform well in dy-
namic conditions since the connectivity is done on the
go. Moreover, ACO is considerably accurate, flexible
and capable of managing large and dynamically grow-
ing networks, because of the distributed computing
methodology.

However, the adoption of ACO also has some dis-
advantages as follows however, one of its shortcomings
is the longevity to converge, that is, how long it takes
before it stabilizes itself. ACO can be computation-
ally expensive to arrive at the best solution whereby
more time is consumed, especially where the network
base is large. While this had made their integration a
slow process, this can be a disadvantage when quick
outcomes are needed. Additionally, there might be an
issue of making ACO optimization complex since some
elements in ACO are quite complex.

2.8 Swarm Intelligence-Based Routing

Swarm Intelligence (SI) is therefore defined as a
method of solving a problem that incorporates services
that imitate behaviours of natural systems, for in-
stance bees, bird or fish. These algorithms solve com-
plicated optimization issues by having many quite sim-
ple partners all work together in a coordinated manner
obeying some local regulations. Another benefit of SI
is that it is more resistant to such attacks as compared
to other authentication methods. This is true because
SI algorithms can easily adapt when one of the nodes

has failed or when there is a change in the commu-
nication graph. Further, SI algorithms are inherently
scalable in that the new solutions possessed are tabled
along with the archive of previous solutions. They are
also partially decentralized which enables them to ad-
minister large networks without necessarily having to
implement a central command system. In addition, it
can also be considered that SI algorithms have quite
a high level of flexibility because they can be used to
solve various optimization tasks within IoT networks.

2.8.1 Limitations Identified

e Huge computational burden.
e Delays in the large networks.

e Parameters Design and tuning are complex.

2.8.2 Expected Improvement (Gap)

The methods fail to tackle the issue of flooding redun-
dancy directly or make real-time decisions. Reward-
based optimization in FARLRO can reduce the time
required to converge and minimize superfluous trans-
missions.

Parameters

RL

Figure 3: Proposed framework

2.8.3 Summary of Literature Gaps

In all the techniques that have been reviewed, the con-
sistent gaps are:

e Deficiency of adaptive management of the inten-
sity of flooding.

e Redundant packet transmissions are high.
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e High dynamism or density leads to poor perfor-
mance.

e Poor scalability and poor overhead.
e Lack of learning based forwarding policies.

These concerns in the proposed model are addressed
by:

e A new system: RL-based adaptive rebroadcast-
ing.

e Achieving resource efficiency.

e Minimizing the number of collisions and conges-
tion.

e Improving the ratio of packet delivery and en-
ergy efficiency.

3 FLOODING-CONTROLLED
ADAPTIVE REINFORCE-
MENT LEARNING-BASED
ROUTE OPTIMIZATION

The main goal of FARLRO is to build an effective
model that prevents the occurrence of floods while op-
timizing the route in network communication. Net-
work congestion and, hence, flooding of the network
is a major issue in dynamic networks. To this end,
FARLRO incorporates the key parameters of the net-
work and applies refined reinforcement learning meth-
ods. FARLRO considers some important network
parameters, including Residual Energy Level (REL),
Available Bandwidth (ABW), Mobility Pattern (MP),
Traffic Condition (TC), and Topological Arrange-
ments (TPA). These parameters provide a complete
status of the network from which the model can make
the most appropriate choices.

Therefore, FARLRO, which uses reinforcement
learning to define the reward matrix, evaluates the
short-term rewards of potential routing actions. This
reward matrix is so well designed that the pros and
cons of energy consumption, bandwidth, mobility,
traffic and network architecture are balanced to the
maximum. The model also applies the Bellman equa-
tion to update the Q-values which are the expected
future discounted rewards of each state-action pair.
Thus, FARLRO identifies the most suitable route from
the source to the destination and thus facilitates the
establishment of proper communication. As it has
been mentioned previously, FARLRO uses the Bell-
man equation, which enables it to consider future re-
wards, thus making the routing more future-oriented.
Therefore, FARLRO is a relatively new technique in
the domain of route optimization and does not per-
mit the network to be overloaded, thus enhancing the
stability of the network.

Innovations in Computing and Emerging Technologies

3.1 Parameters and their importance
in FARLRO

e Residual Energy Level (REL): REL is used to
avoid frequent use of nodes that have low energy,
to increase the network?s lifetime. Add REL to
the state space to track the energy levels of nodes
and add the REL to the reward function to en-
courage the selection of energy-efficient paths.

e Available Bandwidth (ABW): ABW is aimed
here to avoid congestion and proper utilization
of the bandwidth in the network so that there is
no congestion. Add ABW to the state list to see
the current bandwidth usage and incorporate it
into the reward function to consider routes with
enough bandwidth.

e Mobility Pattern (MP): The purpose is to adapt
to the dynamic nature of mobile nodes, ensuring
stable and reliable routes. Include MP in the
state space to capture the movement patterns of
nodes and in the reward, function to favor stable
routes that are less likely to break.

e Traffic Condition (TC): The mission of TC is to
manage network traffic load and avoid conges-
tion by balancing the traffic across the network.
Include TC in the state space to monitor current
traffic conditions and in the reward function to
incentivize load-balanced routing.

e Topological Arrangements (TPA): TA here is
to understand the network topology for opti-
mal route selection, avoiding unnecessary packet
flooding. Include TPA in the state space to rep-
resent the network topology and in the reward
function to select efficient and direct routes.

3.2 Implementation of Reinforcement
learning

It is implemented the above-mentioned parameters to
find the optimum route based on the mentioned pa-
rameters by using reinforcement learning (RL). RL
generally consists of four phases, which are discussed
below.

3.2.1 State space (S)

State space S is a representation of all the relevant
information about the network at a given time. For
each node iii in the network, the state can be repre-
sented as a vector that includes the Residual Energy
Level (REL), Available Bandwidth (ABW), Mobility
Pattern (MP), Traffic Condition (TC), and Topologi-
cal Arrangements (TPA). For a network with N nodes,
where 7N7? is the network density, the state space for
the node can be mathematically expressed in equation
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1 below,
S; = {REL;, ABW;, MP;, TC,, TPA,} (1)

Combining the state of all nodes, the overall state
space S for the entire network can be represented in
equation 2 below,

SN} (2)

The state space for any node i in the network may,
therefore, be described in terms of several parame-
ters defining its running condition and immediate sur-
roundings. First, the residual energy level has the
meaning of the residual battery or energy resources of
node i, this parameter reflects its capability to perform
work and interact with other nodes. Second, the avail-
able bandwidth at node i means a part of the network
capacity or data rate which can be utilized for com-
munication and can affect the efficiency of the node.
The mobility pattern is usually captured in terms of
movement vector and defines a nodes activity in the
network, affecting connectivity and coherence of the
paths. The traffic condition at node i in the exam-
ple describes the current traffic load, or the current
state in terms of the amount of data that is flowing
through at any one time and hence affecting latency
and overall system performance. Last are neighbours
or near nodes which signify the immediate nodes with
which node ¢ can share information and are used in
routing algorithms, topology and other collaborations
for forwarding of data. All together they create a com-
prehensive state space of node 71?7 within the network,
which enables adaptive decision making where con-
straints of the node matter for instance in routing and
resources management.

S = {81782,83,...

3.2.2 Action Space (A)

Action space A defines the set of all possible actions
that can be taken by the RL model to find the opti-
mal route. For each node iii, the actions can include
selecting the next hop for packet forwarding, adjust-
ing transmission power, changing route discovery fre-
quency, and applying congestion control mechanisms.
Mathematically, the action space for node iii can be
expressed in equation 3 below.

In above Eq(3) NH, PTz, RF and CC repersents
the next hop, transmit power, route frequency and
congestion control for the ith node respectively. Look-
ing at the network, which includes all nodes, and then
the overall action space for optimizing the network de-
sign and to ensure delivery of packets efficiently can
be defined as a set of actions that each node can take.
Such action includes that is deciding the next jump
node for packets, where each node analyses its neigh-
bour nodes and selects the best node according to the

parameters like available energy, available bandwidth
and link quality etc. Further, nodes have the capabil-
ity of setting their signal transmission power to man-
age the area and quality of their nodes? connections,
which is essential in managing the direction of energy
consumption while at the same time ensuring good
signal quality. Another key action involves the fre-
quency of route discovery where, through the broad-
casting process, nodes decide how often to perform
route discovery activities given the dynamism in the
network, mobility and route stability. High frequency
update could be useful particularly in conditions where
the surrounding environment changes often, although,
in this case, there could be some overhead introduced
to the system, whereas low update frequency could
lead to the case when the route is already out-dated
in conditions that are rapidly changing. Lastly, the
congestion control mechanisms are an important ac-
tion that nodes must perform to control traffic; to
prevent some areas within the network from leading
to congestion of data traffic. This entails controlling
the speed at which the packets are sent or directing
the traffic to other channels that have few congestion.
These are the constituent actions that comprise the
total recognizable action space by which the network
can respond to fluctuating conditions in real-time on
its accord. This can be mathematically represented in
the following equation 4.

,an} (4)

To explain the state and action space let’s see an ex-
ample, for node 1, based on the given parameters are
REL= 80 Joules, ABW= 10 Mbps, MP= 1.2 m/s,
TC= 15 packets/s, TPA= 2, 3, 4 The state for node 1
can be expressed as given in equation 5,

Sy = 80,10,1.2,15,(2,3,4) (5)

A= {al,ag,ag,...

Some things that node 1 might do is select one of the
neighbouring nodes, like 2, 3 or 4, as the Next Hop. It
could also involve change in the Transmission Power
which ranges from High, Medium or Low. Further-
more, node 1 can also select the frequency of Routing
Discovery which may get high frequency or low fre-
quency. At the end, it could apply Congestion Control
actions such as rate limiting or traffic shaping to curb
congestion.

3.2.3 Reward Matrix

Combining these states and actions, the RL model
can learn to optimize routing by considering the entire
state and action space. The Q-learning algorithm can
be used to update the Q-values for state-action pairs,
guiding the model towards optimal routing decisions
that avoid flooding and enhance overall network per-
formance. Design a reward function that balances the
objectives of avoiding flooding and optimizing routing,
The Reward matrix calculation follows the relation-
ship as described in Eq. (6) and (7).
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R(s,a) = a-REL+3-ABW—~+-MP—46-TC—¢-HC (6)

And for a possible node reward can be obtained,

Q((3,1)) = 87.0 + max(Q((1,-)))
= 87.0+ 87.0 = 174.0

Q((3,2)) = 84.2 + max(Q((2,)))
=84.2+170.2 = 254.4

Q((3,6)) = 78.3 + max(Q((6,-)))
=78.3

Q((3,7)) = 65.5 + max(Q((7, -)))
= 65.5

In this model, weights identify the importance and
frequency of various attributes incorporated into this
model. To decide between these options for simplicity
and to better demonstrate this process, as given these
weights values of 1.

Here S stands for the existing state, while 7a means
an action that has been made, such as choosing the
next hop. The reward is influenced by several factors:
The reward is influenced by several factors: In com-
munication networks, there are several ways that are
used to assess and remunerate for the services that
providers give to the users. Residual Energy Level
(REL) quantifies the power left in nodes of the net-
work, and the node with having higher REL is per-
ceived as a more dependable and renewable node.
Higher REL values are incentivised, thus increasing
the network stability, and high node energy levels in-
crease the network?s longevity. Available bandwidth
(ABW) is the measurement of bandwidth facilities
available for data transmission. According to the
work done, a higher value of ABW means more avail-
ability of bandwidth, which is beneficial for the net-
works. Hence, nodes that have higher ABW should
be rewarded more to encourage optimum utilization
of the effective bandwidth. In contrast, Mobility Pat-
tern (MP) is a measure of the node mobility standard
and depicts the motions of the nodes within the net-
work. Mobility affects the reward of nodes based on
changes in topological structures; hence, network sta-
bility would reduce for node mobility to reflect insta-
bilities. Traffic Congestion or TC is defined as the
measure of the amount of traffic on a network and
since traffic congestion leads to delays in the flow of
traffic then its effect is to slow the throughput of traffic
within a network. Accordingly, nodes, which encoun-
tered more traffic congestion should be rewarded with
a lesser reward. Finally, we have Hop Count, which
indicates the number of intermediate nodes to which
the packet passes. Table 1 shows the nodes and de-
ployment parameter values.

Bellman Equation for Route Optimization

Innovations in Computing and Emerging Technologies

Table 1: Node and Deployment Parameter Values

Node REL ABW vMPC TPA
(Joules) (Mbps) (SH&Ratk- (Neigh-
m/sds/s) bor
Nodes)
1 80 10 v1.25 2,3, 4
2 75 8 v0.80 1,3,5
3 60 12 vl 18 1,2,6,7
4 70 7 v1.25 1,8
5 85 9 v0.30 2,6
6 65 11 v1.22 3,5,7,9
7 55 6 v0.92 3,6, 10
8 90 14 v1.B 4,9
9 50 13 v0.30 6, 8, 10
10 60 5 v1.28 7,9

Hops, if too many, bring about more time delay
and hence routes with high hop values should be dis-
couraged by lower rewards. Scripts 2 and 3 can then
be used to assign the weight based on the above pa-
rameters and create a value function that enables the
decision maker to arrive at the best action based on the
state of the network importance of is the fact that the
parameters and weights will enable the computation of
network performance and reliability, hence improving
the same Bellman equations are used to find the opti-
mum route as per given conditionsasuse the immediate
reward matrix to iteratively calculate the maximum
expected reward for each node. Bellman equation for
this context now becomes, Bellman Equation imple-
mentation

Q(s,a) = R(s,a) + ymaxQ(s', a’) (®)

The Q-value of taking an action 7a? in each state
7s? denotes the potential sum of rewards that can
be earned if that particular action is taken and sub-
sequently the best policy is to be followed. The Im-
mediate reward, which is represented by the function
refers to the reward gained once an action 7a? has
been taken in state ?s?. (that takes a value between 0
and 1) defines the discount factor that is the amount of
credit given to the subsequent rewards, where a value
close to 1 means that the future rewards are as valu-
able as the immediate rewards. For simplicity and
clarity, the value given to is taken as 1 that is the fu-
ture rewards are not at all discounted. The term is
the maximum expectation of future reward from the
next state when playing the best action in that state.
However, during calculations, this term is left blank
because the actual future rewards depend upon many
factors (such as residual energy, available bandwidth,
mobility factor, traffic etc.) all of which are included
in the parameter matrix. Thus, by using the value
known as Q, an action can be chosen that will help re-
ceive the best sum of the reward while operating in an
unknown environment and/or choosing in networks, a
route.
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3.2.4 Policy:

The policy in FARLRO dictates which node to forward
packets to, based on the current network conditions
represented by the parameters Residual Energy Level
(REL), Available Bandwidth (ABW), Mobility Pat-
tern (MP), Traffic Condition (TC), and Topological
Arrangements (TPA). In FARLRO, the policy is the
cornerstone that guides the route optimization pro-
cess. It determines the best routing actions based on
current network conditions and learned experiences,
ensuring efficient, reliable, and flood-free network com-
munication. By continuously adapting to the network
environment and leveraging the Bellman equation, the
policy helps FARLRO achieve its goal of optimal route
selection while avoiding the pitfalls of network flood-
ing.

3.3 FARLRO Real-World Testing

Here is the parameters table which is gained by imple-
menting the model in MATLAB. To assess the nodes?
performance in the communication networks and effi-
ciency of the networks, several parameters are used.
Residual Energy Level (REL) has been used to de-
note the residual energy of each node in Joules, and
it ranges from 50 Joules to 90 Joules. Nodes with
higher REL values are those which have more energy
available and are more reliable and sustainable. The
nodes that have higher residual energy levels are given
preference so that energy consumption for communi-
cation is minimized, and thereby the life span of the
networks is maximized. Available Bandwidth (ABW)
which is in units of Mbps shows the actual availabil-
ity of bandwidth at different node ranges from 5 to 14
Mbps. ABW is typically higher in nodes that provide
better data transmission and better network perfor-
mance; therefore, it should be rewarded so that band-
width usage in the network is optimised. Mobility Pat-
tern (MP) is quantified by the speed of each node in
meters per second (m/s) and its values lie between 0.5
to 1.5 m/s. Hence, while higher speeds translate to
higher mobility, these are often associated with insta-
bilities in the network; as such nodes that have higher
mobility are likely to be awarded lower rewards. Traf-
fic Congestion (T'C) is defined as the packets per sec-
ond that are passed through a certain node, and this
is in the scale of 8 to 30 packets per second. More
traffic congestion implies more delays on the networks
and hence decreased efficiency; nodes that have greater
congestion should be awarded less. Last, Topologi-
cal Arrangement (TPA) is the list of the neighbouring
nodes each node is directly connected to, which por-
trays the structure of the network. The position of
these adjoining nodes determines the level of commu-
nication as well as routing performance. When these
metrics are incorporated in a value function, network
management can make good decisions relating to en-
ergy usage, bandwidth provisioning, mobility, traffic

patterns, and topology for networks to improve their
performance.

3.4 Reward Matrix on given data

Combining these states and actions, the RL model
can learn to optimize routing by considering the entire
state and action space. The Q-learning algorithm can
be used to update the Q-values for state-action pairs,
guiding the model towards optimal routing decisions
that avoid flooding and enhance overall network per-
formance.

REL 90 ABW:13

ABW:14
MP :11
C 08

R 8

ABW: 10

WP 12

T 015 REL :75
ABW: 08

MP 0.8
TC 20

Figure 4: Node deployment and parameter values

3.5 Bellman equation implementation
on given data

The detailed calculations for bellman equation are as
below; From node 1:

Q((1,2)) = 83.2 + max(Q((2,))) = 83.2
Q((1,3)) = 87.0 + max(Q((3,))) = 87.0  (9)
Q((1,4)) = 55.5 + max(Q((4,))) = 55.5

From node 2:

Q((2,1)) = 83.2 + max(Q((1,-)))
=83.2+87.0 = 170.2

Q((2,3)) = 84.2 + max(Q((3,-)))

(10)
= 84.2
Q((2,5)) = 86.5 + max(Q((5,)))
= 86.5
From node 3:
Q((3,7)) = 59.5 + max(Q((7,)))
= 59.5 4+ 409.6 = 469.1 (11)

Q((3,6)) = 51.5 + max(Q((9,)))
=515+ 475.1 = 526.6
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Table 2: Values Reward of Each Node to its Neighboring Nods

Nodes | N1 N2 N3 N4 N5 N6 N7 N8 N9
Node 1 0 83.2 87.0 555 - - - - -
Node 2 | 83.2 0 84.2 - 86.5 - - - -
Node 3 | 87.0 84.2 0 - 78.3 65.5 - -
Node 4 | 55.5 - - 0 — — - 94.9 -
Node 5 - 86.5 - 0 84.2 — - -
Node 6 - - 78.3 84.2 0 68.7 - 61.3
Node 7 - - 65.5 - - 68.7 0 - 59.5
Node 8 - — - 94.9 - - - 0 65.5
Node 9 — - - — 61.3 65.5 65.5 0
Node 10 - - - - - 59.5 - 51.5
From node 4: From node 9:

Q((4,1)) = 55.5 + max(Q((1,-)))
= 55.5 +87.0 = 142.5

Q((4,8)) = 94.9 + max(Q((8,)))

Q((9,6)) = 61.3 + max(Q((6,-)))
(12) = 61.3 + 340.9 = 402.2

Q((9,7)) = 65.5 + max(Q((7,-)))

= 94940 =949 — 65.5 + 409.6 = 475.1 -
From node 5 QO.8) = 635 +max(Q((8.)) "
Q((5,2)) = 86.5 + max(Q((2,-))) = 65.5+237.4 = 302.9
= 86.5 + 170.2 = 256.7 | Q((9,10)) = 51.5 + max(Q((10,)))
Q((5,6)) =842 + max(@((6,))) ) =515+0=5L5
— 84.240 = 84.2
From node 10:
From node 6:
Q((6,3)) = 78.3 + max(Q((3, ))) Q(10,7) =595 + max(Q((7, )))
= 78.3 42544 = 332.7 =595 +4096=469.1 )
Q((6,5)) = 84.2 + max(Q((5,))) Q((10,9)) = 51.5 + max(Q((9,-)))
— 84.2 4 256.7 = 340.9 =515+ 475.1 = 526.6
QU(6,7) = 68.7 +max(@((7, )
— 68.740 = 68.7
Q((6,9)) = 61.3 + max(Q((9,-)))
— 61.3+0=61.3
From node 7:
Q((7,3)) = 65.5 + max(Q((3,)))
— 65.5+ 254.4 = 319.9
Q((7,6)) = 68.7 + max(Q((6,))) (15)
— 687+ 340.9 — 409.6
Q((7,10)) = 59.5 + max(Q((10,-)))
— 59.540 = 59.5
From node 8: " AN | \
Q((8,4)) = 949 + max(Q((4, ) \@ 22 @
=04.9 4+ 142.5 = 237.4 16) ERE ;02 =

Q((8,9)) = 65.5 + max(Q((9,)))
=65.5+0=0655

Figure 5: The optimum path from source to destination
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Table 3: Values Reward Matrix of Each Nodes to its Neighboring Nodes

Source

Destination

IR Qmax Qv

—_

© O WOWWWOT~T~TNDOO OO U U B WWWWh NN — —
©TE X TDOR ST OWOTTWRN W0 TDN = TTW W

= =
o O

83.2 170.2 253.4
87.0 2544 3414
55.5  142.5 198.0
83.2 87.0 170.2
84.2 2544 338.6
86.5 256.7 343.2
87.0 87.0 174.0
84.2 170.2 2544
78.3 3409 419.2
65.5 409.6 475.1
95.5 87.0 1425
94.9 2374 332.3
86.5 170.2 256.7
84.2 340.9 425.1
78.3 2544 332.7
84.2  256.7 340.9
68.7 409.6 478.3
61.3 475.1 536.4
65.5 2544 319.9
68.7 340.9 409.6
99.5 526.6 586.1
94.9 1425 2374
65.5 475.1 540.6
61.3 3409 402.2
65.5 409.6 475.1
65.5 2374 3029
51.5 526.6 578.1
99.5 409.6 469.1
51.5 475.1 526.6

Legends:

IR - Immediate Reward
Qmaz - Max Future Reward
Qv - Q-value (R + Qmaxz)
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Models

Figure 6: Comparison of flooding rate or all models

3.5.1 Optimum path calculation

For the optimum path from Node 1 to Node 10 based
on the Q-values, we begin by looking at the highest Q-

values at each step at the end of the sequence. First,
from Node I, the maximum Q — value directs to Node
3. After that, starting from Node 3, the link with the
higher Q-value leads to Node 7. Last but not least,
from Node 7; we come across the highest Q value,
which leads us to Node 10. Thus, the optimum path
from Node 1 to Node 10, according to the Q-values,
follows the sequence: The path is: Node 1 ? Node 3
? Node 7 7 Node 10. This path is selected because it
has the largest total Q-value; this implies that a given
path is the best or the most optimal path based on the
rewards or penalties given.

4 Results and analysis

To apply the FARLRO model, the following funda-
mental network parameters are to be defined in MAT-
LAB: Residual Energy Level (REL), Available Band-
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width (ABW), Mobility Pattern (MP), Traffic Con-
dition (TC), and Topological Arrangements (TPA).
These parameters constitute the state space, which
is the current state of the network. Subsequently, a
set of actions can be defined that include next hop,
transmission power, and frequency of route discovery
and congestion control. Apply the Q-learning algo-
rithm, which requires the creation of a Q-table where
Q-values are stored, these being the expected future
rewards of state-action pairs. The reward function
should include objectives such as reducing energy con-
sumption and congestion. In the training process in a
simulated network environment, update the Q-values
using the Bellman equation. After the training of the
model, export the Q-values and the corresponding pa-
rameters of the network in a dataset. In Python, load
this dataset with the help of libraries such as Pandas
and then apply path optimization logic to determine
the best path with the help of Q-values. Python can
also be used for further analysis and visualization of
network performance, thus, we can be sure about the
effectiveness and stability of the model. Such an ap-
proach offers a clear plan of how to apply and enhance
the FARLRO model systematically, using MATLAB
for model development and Python for optimization
and analysis.

In this part of this research, FARLRO model
used the following performance evaluation metrics that
have been chosen carefully. Flooding Ratio, Net-
work Congestion Index, Broadcast Storm Frequency,
Packet Drop Due to Flooding, and Impact on Net-
work Lifetime, Mobility-Aware Packet Delivery Ratio
(MA-PDR) and Resource Utilization Efficiency (RUE)
are the metrics that are used to measure the perfor-
mance of the FARLRO model in mitigating flooding
and managing routing in mobile ad hoc networks. All
of them offer different insights into the performance of
the model for controlling the network resources, avoid-
ing network congestion, and improving the overall net-
work utilization. To compare the effectiveness of the
FARLRO model, it is compared with other seven rout-
ing protocols such as Ad hoc On-Demand Distance
Vector (AODV) Routing [2], Dynamic Source Routing
(DSR)[4], Optimized Link State Routing (OLSR)[§],
Temporally Ordered Routing Algorithm (TORA)[7],
Greedy Perimeter Stateless Routing (GPSR)[5], Zone
Routing Protocol (ZRP)[4] and Epidemic Flooding.
These protocols were selected because of their applica-
bility in similar types of network settings and because
they employ different techniques for dealing with net-
work congestion and flooding. In this way, we intend
to show that FARLRO provides a better performance
concerning the protocols described above, thus result-
ing in a more efficient and stable network in terms of
flooding, packet loss, and resource management. Ana-
lyzing the results of this study will offer essential infor-
mation regarding the benefits of employing FARLRO
in networks that are vulnerable to floods and mobility.

Innovations in Computing and Emerging Technologies

4.1 Flooding Ratio

The Flooding Ratio is defined as the ratio of the num-
ber of unnecessary or redundant broadcast packets to
the total number of packets that have been transmit-
ted in the network. The bar graph given below shows
the Flooding Ratio of different network routing models
such as AODV, DSR, OLSR, TORA, GPSR, ZRP and
FARLRO. As has been illustrated in the graph above,
the proposed FARLRO model has the lowest Flooding
Ratio compared to the other models. 20. This is in
contrast with the other models, where the Flooding
Ratios vary between 0 32 0. 45, which shows higher
redundant packet transmission and probable conges-
tion in the network. The reason why FARLRO has
better performance than the other approaches is that
FARLRO has an adaptive learning mechanism that
regulates flooding through the intelligent control of
routing decisions with the real-time conditions of the
network. This helps to reduce the number of broad-
casts that take place and, hence, more effective uti-
lization of the available networks. In contrast, the ex-
isting models, such as AODV and TORA, are based
on relatively more static or reactive approaches that
may cause a lot of flooding, especially in large or dy-
namic networks. The graph effectively illustrates how
FARLRO?s techniques to solve the problem of route
optimization are not only a solution to the problem
of flooding but also have a greater advantage in im-
proving the efficiency of the entire network than other
solutions to solve the problem of traffic congestion in
the network.

B
\
.

123

133

Network Congestion Index
’»
b

Packet Drop Rates

Figure 7: Congestion index with changing PDR

4.2 Network Congestion Index

The four graphs ( Fig. 8-11 given below show the
Network Congestion Index considering the network ca-
pacity, the packet drop rates, the buffer overflow levels
and the queue lengths in the different routing models,
namely FARLRO, AODV, DSR, OLSR, TORA and
GPSR. In all the cases, FARLRO has higher values,
and this shows that it has better performance than
the other models in terms of congestion management.
In the first graph, the congestion index of FARLRO
is relatively low when the network capacity increases
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from 10 to 100 nodes, where FARLRO is 10 at the be-
ginning and 26 at the end, while AODV is 50, which
shows that FARLRO can effectively use the network
resources.
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Figure 8: Congestion index with changing Queue lengths
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Figure 9: Congestion index with changing BOL

The second graph compares congestion with packet
drop rates, and here too FARLRO is depicted to be
quite robust with an index of 25 to 35 when the drop
rates are high, compared to TORA, which has an in-
dex of 45 at the same drop rates.

The third graph, which is on the buffer overflow
levels, indicates that FARLRO manages to keep the
congestion index considerably lower at all the levels
of no overflow, small overflow, large overflow and very
large overflow, starting from level 10 and only rising
to level 22, while DSR and OLSR risesteeply to level
24. FARLRO is 10 at the beginning and 26 at the
end, while AODV is 50, which shows that FARLRO
can effectively use the network resources.

Last but not least, in the graph of queue lengths,
FARLRO is almost static with a congestion index
varying in the range of 10 to 26 while other models
such as GPSR are highly volatile with values peaking
up to 50. These results show that FARLRO has better
congestion control mechanisms than the other models
tested in terms of load management, packet loss rate
and resource utilization.
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45 1 —8— DSR
—o— OLSR
—— TORA
40 { —— GPSR

20 40 60 80 100

Figure 10: Congestion index with changing network
density

4.3 Broadcast Storm Frequency

This measures the ability of your model to prevent
broadcast storms which are severe network congestion
events due to flooding. The graph above shows the
Broadcast Storm Frequency of the proposed FARLRO
model, AODV, DSR, OLSR, TORA, GPSR and ZRP,
when the number of nodes in the network is increased
from 10 to 100.

The FARLRO model is always shown to perform
better than the other models, in terms of having a
lower Broadcast Storm Frequency, especially as the
size of the network increases. For example, with 50
nodes FARLRO has a frequency of 10 while AODV,
DSR and OLSR have a higher frequency of 24, 29 and
35 respectively. This trend is maintained as the node
count goes up; FARLRO has a minimum frequency
of 6 at 100 nodes while ZRP and GPSR have 46 and
41 respectively. The benefit of the FARLRO model
is that it uses reinforcement learning which can adapt
the routing decision depending on the current network
conditions thus minimizing the number of broadcast
messages and avoiding congestion. However, models
such as AODV and DSR that depend on route discov-
ery mechanisms are likely to produce more broadcast
storms as network density increases hence frequent.
Due to their proactive and hybrid natures, OLSR and
ZRP have higher storm frequencies in a large network,
although the overhead is a problem. FARLRO’s ca-
pability of reducing such incidents not only improves
efficiency in the network but also guarantees more sta-
ble connections as the network expands, making it a
great tool for managing floods and routing in a dy-
namic network.
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Figure 11: Comparison of packet drop ratio during the
flooding period

4.4 Packet Drop Ratio Due to Flood-
ing

Packet drops ratio due to flooding is the ratio of the
packets that are dropped because of flooding rather
than other reasons, such as link failure or congestion.
This is a metric of packet drops due to flooding only,
and this gives a clear picture of the impact of flooding
on the packets and how well the model can mitigate
it.
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Figure 12: Broadcast storm frequency for all models

4.5 Impact of flooding on network life-
time

This metric measures how the control of flooding en-
hances the lifetime of the network by avoiding the
wastage of energy in unnecessary transmission of pack-
ets. Reducing flooding should mean that more en-
ergy will be saved across the network, especially for
nodes that would have been overloaded with process-
ing and forwarding of unnecessary packets. This in
turn, increases the network?s life cycle time. The fig-
ure above shows the network lifetime for the FARLRO
(Proposed Model) and other routing models, such as
AODV, DSR, OLSR, TORA, GPSR, and ZRP, at dif-
ferent densities of the network (25, 50, 75, and 100).
The y-axis is the time to the first node death in the net-
work, which is an essential measure of the network?”s
sustainability and productivity. The FARLRO model
is always superior to other models in terms of net-

Innovations in Computing and Emerging Technologies

work lifetime at all network densities. For example,
when the network density is 100 nodes, the FARLRO
model preserves the network lifetime of 100 units,
while ZRP is only 50 units, and GPSR — 55 units.
This is true for lower densities as well; FARLRO has
achieved 120 units at 25 nodes, while ZRP has only
70 units. FARLRO outperforms other algorithms be-
cause of the use of reinforcement learning to determine
the best routing path based on the node energy, thus
avoiding the early exhaustion of the nodes. The Fig.
(14) shows the results of various models.
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Figure 13: Comparison of mobility award PDR for all
models

However, models like ZRP and GPSR have the
drawback of faster node depletion because of poor uti-
lization of energy resources and high overhead due to
continuous routing updates and flooding. AODV and
DSR are better than ZRP and GPSR, but still have a
shorter network lifetime than FARLRO, with 75 and
70 units in 100 nodes respectively. This graph clearly
shows how FARLRO can prolong the life of the net-
work through the optimization of energy consumption
in a densely built network.
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Figure 14: Comparison of impact of network lifetime
during the flood period
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4.6 Mobility-Aware Packet Delivery
Ratio (MA-PDR)

Mobility of nodes directly affects the Packet Delivery
Ratio due to its increased frequency of route distur-
bance and spending more time on the route discovery
and maintenance process. It measures the number of
packets that have been delivered, considering the mo-
bility of the nodes and how the protocol can respond
to it. MA-PDR is used in the analysis of the model
in scenarios where the position of nodes is constantly
changing. When the MA-PDR is higher, it implies
that the proposed FARLRO model can address route
disruptions due to mobility and, hence, results in bet-
ter delivery rates and reduced flooding. The graph
shown below shows the comparison of MA-PDR in
terms of network density and node mobility speed to
understand the performance of different routing mod-
els. The x-axis is for network density from 10 to 100
nodes and the y-axis is for node mobility from 5 m/s to
30 m/s. The color intensity or the height of the bar in
the graph represents the MA-PDR and the scale goes
up to 1 where the bars show better performance. The
FARLRO model always shows better performance in
terms of packet delivery ratio while the network den-
sity and mobility are high. For instance, at 100 nodes
density and 30 m/s mobility FARLRO has an MA-
PDR of 72% while other models decrease to 60% or
below at the same conditions. This robustness is due
to the use of the adaptive learning-based technique in
FARLRO that can address the dynamic factor inher-
ent in a high mobility environment and high node den-
sity by making optimal routing decisions in real time.
However, conventional protocols such as AODV, DSR,
and OLSR fail to achieve high packet delivery ratios
as mobility rises because they are unable to react effi-
ciently to frequent changes in topology. Consequently,
these models have a significant reduction in the MA-
PDR, especially in the conditions of high node mo-
bility and density, which results in a higher level of
packet loss and lower network stability. The graph
depicts FARLRO in maintaining the network perfor-
mance during unfavorable circumstances and is more
efficient in packet delivery than other routing proto-
cols.

4.7 Resource Utilization Efficiency

(RUE)

RUE measures the degree of utilization of the network
resources, for instance, bandwidth or energy, during
the routing process with the view of assessing the ef-
fects of resource utilization on the general performance
of the network. The management of resources should
be done effectively to avoid congestion of the network
and to increase the lifespan of the network. This met-
ric evaluates how the FARLRO model deals with re-
sources to eliminate floods and maintain network con-

tinuity. This means that the higher the RUE, the bet-
ter the model in leveraging available resources to min-
imize the occurrence of floods. The RUE results are
shown in Fig. (15).

The RUE results are shown in Fig. (15). The
graph presented is a 3D surface plot which shows the
Resource Utilization Efficiency (RUE) with network
density and node mobility as two parameters; the for-
mer is in terms of nodes, while the latter is in me-
ters per second. The z-axis is the percentage of RUE,
which shows how effectively the network resources are
being used depending on the situation. The above
graph shows that as the density of the network in-
creases from 10 to 100 nodes and node mobility from
5 m/s to 30 m/s, the RUE generally the decreases.
This trend is an indication of the fact that network
protocols are facing more difficulty in managing re-
sources efficiently in more complicated and dynamic
situations. The FARLRO model is also distinguished
by the fact that it keeps higher levels of RUE in all
types of organizations. For example, at the network
density of 50 nodes and the mobility of 15 m/s, RUE
for FARLRO is about 75% while other models are less
efficient and can go as low as 65% under the same cir-
cumstances. This is because FARLRO has an adap-
tive reinforcement learning method of managing the
network resources that allows it to allocate the re-
sources optimally based on the current network condi-
tions. However, in the case of increased node mobility
and overall node density, conventional models such as
AODV and OLSR are not very efficient and result in
poor utilization of resources. These models are based
on static or reactive approaches that cannot efficiently
handle the changes in the topology and the increased
density of the networks. Therefore, their RUE reduces
at a steeper rate than the competitors, suggesting poor
network utilization. The graph also emphasizes the
effectiveness of FARLRO in controlling resources in a
network environment that is dynamic and dense hence
making it the best option.
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Figure 15: RUE with changing network density and
mobility levels
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5 Conclusion

In conclusion, the findings of this study show that the
developed FARLRO model can help to overcome the
major issues related to routing in IoT networks. Some
of the network parameters that are incorporated in
FARLRO include Residual Energy Level (REL), Avail-
able Bandwidth (ABW), Mobility Pattern (MP), Traf-
fic Condition (TC), and Topological Arrangements
(TPA). The use of reinforcement learning, especially
the Q-learning algorithm and Bellman equation, al-
lows FARLRO to make dynamic routing decisions to
avoid flooding and, at the same time, make the best
use of the available resources. FARLRO was compared
with several other routing protocols, such as AODV,
DSR, OLSR, TORA, GPSR and ZRP, under different
network scenarios. The results indicate that FARLRO
consistently outperforms these models in key perfor-
mance metrics: it has better flooding ratios, network
congestion index, broadcast storm frequency, packet
drop ratio due to flooding, network lifetime, mobility-
aware packet delivery ratio, and resource utilization
efficiency. It is therefore evident that the usage of
adaptive and intelligent routing mechanisms such as
FARLRO can greatly improve the stability, efficiency
and durability of IoT networks. The ability to sustain
high performance in conditions of high density and dy-
namism of the network makes FARLRO a highly suit-
able solution for optimizing the route in IoT systems.
The study is useful in the understanding of reinforce-
ment learning in networking and provides a direction
for the future development of IoT routing technologies.
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